Ólom akkumulátorok

By , 2012. December 26 19:27

Az ólom akkumulátorok kereskedelmi forgalmazása több, mint 100 éves múltra tekint vissza. Ugyanaz a kémiai reakció játszódik le napjainkban is, mint amikor a francia felfedezője Gaston Planté megalkotta 1859-ben (jobbról balra – töltési folyamat) Áramgenerátorok megjelenésével olcsóbb elektromos energiához jutott az ipar, széles körben elkezdték alkalmazni a hidrolízis folyamatát fémek tisztításának céljából (porózus lamellák jelentősen javítják az akkumulátorok teljesítményét az első akkumulátorokhoz képest). Így az akkumulátorok gyártása és használata rentábilissá vált és széles körben elterjedt.

Töltött akkumulátor Anód: PbO_2 + SO_4^{2-} + 4 H^+ + 2 e^- \longrightarrow PbSO_4 + 2 H_2OKatód: Pb + SO_4^{2-} - 2 e^- \longrightarrow PbSO_4 Meritett akkumulátor

Töltés folyamán, ha már elfogyott az ólom-szulfát a lamellákon, víz hidrolízise következik be, melynek során oxigén és hidrogén képződik és elfogy a víz az akkumulátorból. Ezért rendszeresen ellenőrizni kell az elektrolit szintjét és a koncentrációját az ilyen akkumulátorokban (1,23g/cm3 – 65% víz és 35% sav). A vízveszteség pótlását csak az akkumulátor töltött állapotában szabad végezni magas tisztaságú ioncserélt, vagy desztillált vízzel (folyadéknak kb. 10mm vastagon kell fednie a lamellákat).

Belső szerkezete lamellás, vagyis elektrolittal átitatott szeparátorokkal elválasztott ólomdioxid (ólom-peroxid, anód, -) háló és szivacsos ólom (katód, +) váltja egymást. A gyakorlatban nem tiszta ólomból vannak a lemezek, hanem 1-2% antimont vagy más anyagokat is tartalmazhatnak mechanikus tulajdonságuk javítása céljából, és egyéb felhasználási igényektől függően. Gyártás során az anódot sárga-színű ólom-oxid pasztával töltik fel és “száraz cella” formájában tárolják. Az akkumulátor gyári töltését sósav segítségével végzik. Ilyenkor a sárga ólom-oxid sötétbarna ólomdioxiddá alakul. Ezután már csak le kell cserélni az elektrolitot és használatra kész.

lead-acid_battery

Az ólomsavas cellák energiatárolási képessége 60-100Wh/kg (133Wh/kg elméleti), teljesítménye 160W/kg. Töltött cella maximális feszültsége 2,17V, üzemi feszültség 2V, lemerült cella feszültsége 1,75V min., üzemi hőmérséklet -40 – 40°C (magas víztartalom miatt alacsony hőmérsékleten az akkumulátort magas töltöttségi szinten kell tartani). Önkisülési érteke a celláknak mindössze 3-4%/hó, így a teljesen feltöltött cellák tárolásuk során minimális gondozást igényelnek. Utántöltésüket elegendő nyolc-hónaponként elvégezni 2,35V feszültséggel 6-12 órán át. Hosszadalmas tárolás vagy magas áramokkal való gyakori kisütés esetén célszerű tornáztatni (kisütéssel és töltéssel) a cellákat névleges (1C) értékű árammal. GEL akkumuláturok újratöltéseinek száma

Akkumulátorok gyengülésének fő okai a lemezeken képződő ólom-szulfát kristályok (dielektrikum) melyek fizikailag csökkentik a reaktív felület nagyságát, és a lamellák korróziója, melynek során a lamellák összeomlanak, feloldódnak az elektrolitban. Összeomlott cellák könnyedén zárlatosak lehetnek vagy a lehulló lamella elemek, vagy az egyre vastagabb rétegben lerakódó ólom/ólomdioxid miatt. Ezért a legjobb eljárás ezen folyamatok ellen, ha mihamarabb újratöltjük az akkumulátort. Ólom-szulfát kikristályosodása már 12,4V (6 cellás akkumulátorra értendő) alatti feszültségnél elkezdődik. Egyes akkumulátortöltők képesek az ólom akkumulátorok kondicionálására. Ilyenkor több órán át nagy áramú, de időben rövid impulzusokat küldenek az akkumulátorba, ezzel eltávolítva a kristályokat a lamellák felületéről. Hőtermelődés miatt célszerű kihűlési szakaszokkal megszakítani a kondicionálást. Hiteles mérési eredmények érdekében, érdemes eltávolítani a lemezek felületi töltését, mely töltés vagy fokozott igénybevétel során alakul ki, és elektrolit koncentrációkülönbségből adódik a lemezek felülete mentén. Ehhez hagyjuk pihenni az akkumulátort 4-12 órán át, vagy járassuk meg egy kicsit (indítómotor használata 15mp-en át vagy fényszóró használata 5 percen át) és 10 percig hagyjuk pihenni.

Töltöttség Savsűrűség (kg/l) Akkufeszültség 6P (V) Fagyáspont (°C)
100% 1,265 12,7 -60
*75% 1,225 12,4 -48
50% 1,190 12,2 -36
25% 1,155 12,0 -26,7
Mélykisütött 1,120 11,9 -23,3

Starter vagy indító ólom akkumulátorok felépítése úgy van kifejlesztve, hogy rövid távon nagy áramot legyenek képesek leadni. Ehhez nagy reaktív felület szükséges, ezért a lamelláik vékonyak és porózusak. Gyenge pontjuk, hogy nehezen viselik a kisütést, ezért gyakori (2-3 hetente) utántöltést igényelnek, hogy ne sérüljenek az elektródák.

Mély kisütésű ciklikus ólom akkumulátorok azzal a céllal lettek kifejlesztve, hogy jól bírják a mély kisüléseket (akár névleges kapacitásuk 80% is képesek leadni) és vastagabb lamellákból épülnek. Olyan alkalmazásokban használják, ahol gyakori a lemerítés és a feltöltés, de viszonylag alacsony teljesítmény leadására van szükség (elektromos járművek, szünetmentes tápok).

Zárt biztonsági szelepes ólom akkumulátorok (VRLA – Valve Regulated Lead Acid) AGM rehidratációja két csoportra oszthatóak: AGM – melynél az elektrolit fel van itatva a lamellák közé helyezett szeparáló réteg anyagába (üvegszálpaplan), illetve GEL technológia esetében az elektrolit gél állagú. A zselés akkumulátorok kapocsfeszültsége 0,2V nagyobb a többihez képest. Mindkét esetben túltöltéskor képződő hidrogén és oxigén a cellán belül rekonbinálódik, a cella rehidratálódik, de szó sincs teljes karbantartás hiányáról, mi több, jobban oda kell figyelni a feszültségi határokra és a töltés áram szintjére, mert a zárt cellákba képződő gázok robbanást is okozhatnak. Ólom-szulfát kristályok zárt cellás akkumulátorokban is képződnek. Nagy előnyük, hogy az elektrolit nem “szabad” ezeknél az akkumulátoroknál, így bármilyen pozícióban felszerelhetők, tárolás során a sav és a víz nem frakcionálódik, és jól bírják a rázkódást is. Gyakran alkalmazzák őket áramforrásként mozgó és fő áramellátó hálózatoktól messze eső telephelyeken vagy tartalékrendszerekben.

AGM(Absorbed Glass Matt) felitatott üvegszálas konstrukció az akkumulátorlemezek között egy bór-szilikát párnát jelent, amely egyéb hasznos tulajdonsága mellett megakadályozza a lemezek közötti vagy alatti cellazárlatot is. Az AGM konstrukciók további előnye, hogy akkor sem szivárog ki belőlük elektrolit, ha az akkumulátor háza megsérül, széttörik. A legtöbb AGM akkumulátor rendelkezik az un. gázrekombinációs képességgel. A hagyományos akkukhoz képest ugyancsak növekszik a kisütés és az újratöltés hatásfoka. Felhasználása a nagy-teljesítményű indító akkumulátoroknál, ciklikus alkalmazásoknál (szünetmentes tápellátás) és napelemes rendszereknél jelentős. A jó minőségű AGM akkumulátorok akkor fogják élettartamuk maximumát nyújtani, ha azokat újratöltik, mielőtt a töltöttségi szintjük 50% alá esik. Ha ezeket az akkumulátorokat 100%-osan kisütjük, akkor az élettartamuk nem lesz több, mint 300 ciklus (300 feltöltés-kisütés). Odafigyeléssel átlagosan 1000 ciklust is elbírnak. Az AGM akkumulátorok töltőfeszültsége nem tér el a hagyományos savas akkumulátorokétól, ezért nem igényelnek speciális akkumulátortöltőt. Mivel ezeknek az akkuknak a belső ellenállása igen alacsony, ezért a töltésük alatt csak minimálisan melegednek. Az AGM akkumulátoroknak ugyancsak alacsony az önkisülése (havi 1-3%), ezért jobban bírják a töltés nélküli tárolást, mint a hagyományos társaik.

GEL – zselés akkumulátor belsőleg annyiban hasonlít az AGM akkumulátorokhoz, hogy az elektrolit itt is meg van kötve. Az AGM akkuban az elektrolit továbbra is folyékony kénsav, csak fel van itatva, míg a zselés akkuban szilika-gél segítségével az elektrolitot elzselésítik. A zselés akkumulátorok töltőfeszültsége kb. 5%-al alacsonyabb, mint a hagyományos savas vagy AGM akkumulátorok esetében (az akku kapacitásának kb. 5%-a). A zselés akkumulátor cella a legérzékenyebb valamennyi típus közül a túltöltésre, amely korai akkumulátor tönkremenetelhez vezet. További hátrány, hogy a zselés akkumulátor teljes feltöltési ideje hosszabb, mint egy hasonló kapacitású hagyományos akkumulátornak (mivel alacsonyabb a töltőfeszültség), a magasabb feszültségű töltés folyamán keletkező gázbuborékok pedig a zselében alacsonyabb akku kapacitást eredményeznek, megrövidítvén így annak élettartamát is. Zselés akkumulátorok igazi felhasználási területe, ahol az akkumulátor kisütése a 100%-os mértéket is eléri. Nem megfelelő akkumulátor töltő használata esetén az akkumulátor korai halála szinte elkerülhetetlen.

Az akkumulátorok szeretik, ha megfelelő karakterisztika szerint töltik fel őket, különösen mély kisütött állapotukból. Ezt az optimális töltési karakterisztikát 3 lépcsős töltési karakterisztikának nevezzük. Ezt a karakterisztikát csak speciális processzor-vezérelt akkumulátortöltők képesek nyújtani.

Az első lépcső a egyenáramú töltés (bulk charging), ahol az akkumulátor a kapacitásának kb. 80%-át visszanyeri maximális áram felvétel mellett (0,20-0,25C nagyságú árammal töltünk, vagyis 7Ah esetén ez 1,4A-t jelent). Amikor a töltés feszültsége eléri a 14,4V-ot, elkezdődik a második fázis, a kímélő töltés (absorption charge). Ilyenkor a töltőfeszültség állandó 14,4V-os értéken marad és a töltőáram folyamatosan csökken az akkumulátor belső ellenállásának növekedése miatt. Amikor az áram értéke eléri a 0,05C (~350-500mA) értéket, az akkumulátor töltöttsége 98% körül jár. Itt elkezdődik a harmadik lépcső, a csepptöltés (float charging), amely kb. 13,4V-os töltőfeszültséggel zajlik alacsony töltőárammal, kíméletesen töltve az akkumulátort. Ezzel az utolsó lépcsővel az akkumulátor töltöttsége eléri vagy megközelíti a 100%-os értéket. A csepptöltés ideje alatt az akkumulátor nem melegszik és a töltöttségi szintje közel 100%-os marad hosszú idejű pihenés alatt is. Megjegyezzük, hogy bizonyos zselés vagy AGM akkumulátorok ettől eltérő karakterisztikát igényelnek. Cséptöltés előtt egyes töltök kiegyenlítési vagy túltöltési eljárást alkalmaznak, melynek során megemelik a töltő feszültséget 15,5-16,25 V-ra, ezzel kiegyenlítve a cellák feszültségét, gézképződéssel megkavarva az elektrolitot, leválasztva a lamellák felületéről a szulfát kristályokat. Ennek a lépésnek a hasznosságáról eltérnek a vélemények és alkalmazását csak ritkán, félévente egyszer ajánlják!

Automata töltési profilok Pb/PbO2, PbCa/Ca és AGM akkumulátorokhoz.

PbO/Pb töltési profil PbCa/Ca töltési profil AGM töltési profil

Ha nem áll rendelkezésünkre automata töltő, akkor egy szabályozható tápegység segítségével is fel tudjuk tölteni az akkumulátorunkat ügyelve a következő töltési értékeket:

Akkumulátor típus Töltés (V) Cseptöltés (V) Kiegyenlítés (V)
Elárasztott 14.4 13.2 15.1
Elárasztott karbantartás mentes 14.8 13.4 15.5
AGM 14.4 13.6 15.5
GEL 14.1 13.2 N/A
Mély kisütésű 14.5 13.2 15.8

Mivel a vegyi folyamatok hőmérséklet függőek, némi feszültségkompenzációra lehet szükség, ha a töltési hőmérséklet eltér a normálistól (25°C). A kompenzálás mértéke 2,8-3,3 mV/°C tartományon belül szokott lenni. Ez annyit jelent, hogy például -1,1 °C esetén egy elárasztott akkumulátor töltéséhez 15,2 V feszültség szükséges. Ezt akkor is figyelembe kell venni, ha tárolás során cséptöltéssel kondicionáljuk az akkumulátorokat. Hőkompenzált feszültségértékek

Felmerül még az a kérdés is, hogy mennyi ideig töltsük az akkumulátort? Töltés során sajnos számolni kell energiavesztességre, mely hővé fog alakulni a vezetékeken, érintkezőkön, csatlakozókon. Egy 10%-ban lemerült akkumulátor esetén a töltési idő hozzávetőlegesen egyenlő a visszatöltendő energia ás töltőáram 90%-ának hányadosával. Vagyis egy 40Ah akkumulátor esetén 2A töltőáram esetén (40Ah x 10%)/(2A x 90%)>2h. A teljesen kisütött akkumulátorok hozzávetőleges töltési ideje duplája lesz az akkumulátor névleges teljesítményének és töltési áram hányadosának. Előző példa alapján 2 x 40Ah / 2A ~40h. Ne hagyjuk őrizetlenül az akkumulátort, ha szabályozható tápegységgel vagy manuális töltővel töltjük, hogy ne töltődjön túl az akkumulátor. Kerüljük a gyors-töltők használatát öreg szulfátosodott vagy kisütött akkumulátorok esetén. Ezeket az akkumulátorokat csak kis árammal lehet tölteni. Nagyon fontos, hogy töltésnél során az akkumulátornak nem szabad bugyognia, sem magas hőmérséklet, sem gázképződés miatt!

Az akkumulátorok élettartalma 90%-ban a felhasználó odafigyelésén múlik. Ezért tartsuk az akkumulátort tisztán, szennyezőanyagmentesen, különösen a kapcsoknál, mert a szennyező anyagok vezetőként viselkednek, és megnövelik az akkumulátor önkisülését. Töltés vagy üzemeltetés során ne mozgassuk a csatlakoztatott kábeleket, mert a keletkező szikra esetleg belobbanthatja a felgyülemlett hidrogént. Nyitott akkumulátoroknál érdemes kiegyenlítő töltést végezni cellánként, ha az elektrolit sűrűsége 0.05 egységnyi eltérést mutat. Cellák nyitása és karbantartásakor használjunk gumikesztyűt, szemüveget és köpenyt. Természetesen zárt celláknál nincs szükség ilyen jellegű beavatkozásra. Biztonsági használati előírások szigorúan azt is ajánlják, hogy legyen valaki a közelben, ha nagy ampert leadni képes akkumulátorokkal dolgozunk, legyen előkészítve sok víz és szappan, arra az esetre, ha a sav bőrünkre, ruházatunkra kerülne. Sütőszódával tudjuk semlegesíteni a kiömlött akkumulátor folyadékot, és természetesen ne okozzunk rövidzárlatot, mert az a fémelemek olvadását, akkumulátor robbanását is okozhatja, ezért a fémékszerek levétele szintén ajánlott.

Szervók működése

By , 2012. December 8 19:26

Szervók

Felépítésében viszonylag egyszerű szerkezet, mely egy nyáklapból, rajta vezérlő elektronikával, egy egyenáramú motorból, fogaskerekekből áll, melyek egy csinos kis dobozba vannak zárva. Az erőátviteli lánc utolsó fogaskerekének a tengelye ki van vezetve a dobozból. Erre kerül majd csatlakoztatásra a szervókar és arra a tolórudak. Ugyanennek a fogaskeréknek az alsó része pedig egy potméterhez van erősítve, hogy visszajelzést tudjon adni a vezérlő elektronikának (egy korábbi jegyzet: Motor- és hajtásvezérlés alapelve). A fogaskerekek anyagukban eltérnek tervezett terhelések függvényeben. Leggyakrabban poliamid vagy egyéb műanyag-fogaskerekű szervókkal találkozunk, de készülhetnek fémből, karbonból és az extrém terheléseknek kitett szervók akár titánból is. Nagyobb terhelésre szánt szervók utolsó fogaskerekét egy vagy két csapággyal is alá szokták támasztani.

Szervó felépítése

Táplálás illetve parancstovábbítás céljából 3 vezeték van kivezetve a szervóból: test, táp és bemeneti jel. Sajnos a vezetékek színezése, sorrendje és csatlakozója gyártóként változhat. Modellezésben alkalmazott szervók táplálása általában 4,8-7,2V feszültséggel folyik. Fontos megjegyezni, hogy minél magasabb a feszültség, annál nagyobb nyomatékot fejt ki a szervó, de ezzel csökken az élettartalma is – érdemes a gyártó által ajánlott értékeken belül üzemeltetni. A harmadik vezeték jeltovábbítás céljából lett kivezetve és általában 5V feszültségű PWM jelekkel közöljük a szervóval, mekkora szögben térítse ki az a kart.

Pulse Width Modulation – impulzusszélesség vezérlés

Szervó PPMImpulzusszélesség vezérlés magáról beszél: az információtovábbítást egy jel szélességének változtatásával érjük el. A modellezésben használt szervomotorok vezérlése 50 herzes, vagyis 20ms hosszúságú keretben zárt jelekkel vezéreljük. A keretben levő 1500 μs (1,5ms) hosszúságú jel középállásba kényszeríti a szervó karját. A gyártók eltérő mozgásterű szervókat gyártanak. Leggyakrabban használtak -60 és 60° között mozognak, és általában 1000-2000 μs jelszélességet igényelnek. Vannak nagyobb mozgásterű szervók is, így például futóműmozgató szervók általában 180° azaz ±90°-ra képesek elfordulni a középállástól számítva. Ezeknél vagy a visszajelzést biztosító potmétert, vagy az alkalmazható jelszélesség tartományát szélesítik, így a vezérjel 650 és 2350 μs hosszú lehet. Robotikában előfordulnak 360°-os vagy korlátozás nélküli szervók is, melyeknél a pozíciómegha-tározására enkodert használnak.

Az analóg módon működő szervók számára nem elegendő egyszer kiadni az impulzust, mert lehet, hogy a szervókar még nem éri el a végső pozícióját. Azonkívül a jel nélkül a feszültségátalakító nem táplálja a motort, így nem keletkezik nyomaték a karon, “ernyed” a szervó. Digitális szervók esetében egy jel kiküldése elegendő, mert a beépített mikrokontroll gondoskodik a végső pozíció eléréséről, utána, jel hiányában azonban a digitális szervó is “ernyed”. A digitális szervót ezenkívül eltérő válaszreakcióra is programozhatjuk, amivel optimalizálhatjuk bizonyos feladatokhoz. Vezérfrekvencia terén a szervók elég rugalmasak. Analóg verziók 30-60 Hz-en, digitális példányokat pedig akár 300 Hz-en is vezérelhetjük. Ha kissé terheljük egy analóg szervó karját, halhatjuk a “cicergést”, mely a jelmentes és aktív szakok váltakozásából adódik.

A szervók elektronikája úgy van kialakítva, hogy meg tudja határozni, a vezérjelnek megfelelő pozícióban tartózkodik-e a kar, és ha nem, akkor melyik irányba kell elmozdulnia. A PWM jel feldolgozása során a feszültségkonvertáló egység a jel alapján egy adott feszültséget állít elő. A szervóra jellemző maximális jel esetén a generált feszültség eléri a tápfeszültség értékét – ez a referencia feszültség. A szervókar tengelyére kötött potméter a kar elfordulása során nulla és tápfeszültség közötti értéket add vissza és ezáltal a egy belső monostabil oszcillátor impulzusszélességét szabályozza. Ha a bemenő jel pozitív (és általában azt alkalmazzák), akkor a monostabil jele negatív. A két jel egy komparator fokozatba kerül és a szélesebb jel különbsége kerül a kimenetre, tehát lehet + vagy – jel a komparator kimeneten meghatározva a végfok hídjának a vezérlését, tehát a motor forgási irányát. Mihelyt a két jel szélessége azonos, a komparatoron megszűnik a jel és a motor nem kap feszültséget. ServoTester

Ha valaki szeretne egy kis tesztert készíteni a szervóihoz, baloldalt megtalálható egy multivibrátor alapú séma. Három ellenállás szabadon cserélhető benne, és ezáltal a kimeneti jel változik. R3 – ellenállás megadja a keret méretét, 470KΩ ellenállás 35Hz oszcillálást okoz. Az R1 és R2 ellenállások megadják a minimális és a maximális pozitív jel hosszúságát. Ajánlott értékek: R1=6,9KΩ (650 μs), R2=33KΩ (2500 μs). Egy 100KΩ potméter segítségével tudjuk változtatni a pozitív jel szélességét az R1 és R2 által behatárolt tartományon belül. Szervó csatlakoztatásánál ügyeljünk a polaritásra, mert az áramkör nem védett! Szerencsére a modern szervók többségénél a pozitív tápkábel a csatlakozó közepén található így téve a csatlakozást biztonságosabba. Futaba J-típusú csatlakozókon Szervó csatlakozók kis tüske található, mely szintén megakadályozza a helytelen csatlakoztatást. Általánosságban elmondható az alkalmazott színekről, hogy a FEKETE és a BARNA a test vagy a föld, kinek hogy tetszik jobban, a PIROS a pozitív tápcsatlakozó, a KÉK, FEHÉR, SÁRGA pedig a vezérjel.

Főbb paraméterek meghatározása

By , 2012. September 13 13:51

A kis sebességek aerodinamikája terén több mérnök és egyetemi professzor kitartóan dolgozik azon, hogy az analitikai módszerek minél jobban megközelítsék a tapasztalati eredményeket, megbízható támpontot nyújtsanak a tervezésben. A szerkezeti megoldásokkal együtt, szinte elkerülhetetlen jelleggel, magukkal hozzák azokat a tervezési megoldásokat, melyek jó modellrepülőgép megépítéséhez nélkülözhetetlenek. Esetünkben azonban a módszertan inkább közelítő jelleggel bír, mely segítségével meghatározzuk ugyan egyes paraméterek nagyságát de legalább 20%-os biztonsági tartalékkal kell számolnunk. A gép elkészültével, berepítés után derül ki csak, hogy megépített gépünk tudja-e nyújtani azt, amit megálmodtunk. Egy valamit azért mindig szem előtt kell tartanunk: csak jól megtervezett, megépített gépet lehet jól trimmelni!

Modelltervezés során a modell paraméterei, mint a szárnyfesztávolság, a húr hossza, a gép hossza, a legáltalánosabb és elsősorban megválaszolandó kérdések közé tartoznak. A modell teljesítménye a méreteivel együtt nő, a gép láthatósága javul, aerodinamikailag kedvezőbb körülmények között repül, de nehezebb a szállítása és sérülékenyebb is; 3 méternél nagyobb gépek esetén kompozit anyagok használata már elkerülhetetlen. Ezért a 1600-2400 mm szárnyfesztávolságú modell építése, tervezése és építése ajánlott azok számára, kik jól teljesítménnyel rendelkező és szállítható modellrepülőgépet szeretnének viszonylag rövid időn belül.

A szárnyra ható erők számításánál figyelembe kell venni azt, hogy a szárnyunk véges és a szárny végén “szivárognak” az erők, ráadásul, minél hosszabb a szárnyvég húrhossza, annál nagyobb a vesztesség. Ezen vesztességek mértékét a szárnyunk kialakításának jellemzői jelentősen befolyásolják. A végtelen szárnyra tett megállapítások ugyan igazak véges szárny esetében is, de a véges szárny fölött és alatta létrejött nyomáskülönbség megpróbál kiegyenlítődni, ezáltal az áramlatok oldalirányú mozgás is végeznek, térbeli áramlást hozva létre a szárny körül. Felülnézetben az áramlatok a véges szárny fölött a nagyobb íveltségű szárnyszakasz felé hajlanak, ahol alacsonyabb a nyomás (általában a törzs felé), míg szárny alatt az áramlatok a magasabb nyomású területekről a szárnyvégek felé hajlanak. A kilépőélnél a két réteg nyomása már közel azonos, de a részecskék áramlási iránya és sebessége eltér. A különböző irányú áramlások egyesülésekor a kilépő él mögött örvények keletkeznek, örvényfelület alakul ki. Különösen erős örvények alakulnak ki a szárnyvégek körül. Az indukált örvények energiát vonnak el a rendszerből és ezáltal csökkentik a szárny hatékonyságát, ezért kialakulásukat indukált ellenállás kíséri. Az áramlások oldalirányú eltolódása, és így az indukált ellenállás szorosan is a felhajtóerő keletkezéséhez kötött jelenségek, és alakulásuk annak nagyságától függ. Az indukált örvények hatására az egész áramlás iránya megváltozik, lefelé terül el. Mivel a nyomás hangsebességgel terjed, így a kitérés már a szárny előtt elkezdődik. Ennek köszönhetően a szárny valós állásszöge kisebb a geometriainál – ez az indukált állásszög. Newton törvényeit alkalmazva belátható, a felhajtó erőnk annál nagyobb, minél nagyobb légtömeget tudunk mozgásba hozni!

Veges szárny éramlásai

Ha már eldöntöttük, milyen fesztávolsággal fog bírni a modellünk, akkor következhet a szárny oldalviszonyának a meghatározása (jelölése görög labda [Λ] vagy AR). Az oldalviszony egy dimenzió nélküli szám, és a szárny karcsúságát jellemzi. Téglalap alakú szárny esetén ez a szárnyfesztáv és a húr hosszának a viszonya (\frac{b}{l}), egyéb formájú szárny esetén a következő a fesztáv négyzetét osszuk a szárny területével:

AR = \frac{b^{2}}{S},

ahol az S – a szárny alaprajzi területe, a b – a szárnyfesztávolság,Egyenes téglalap alakú szárny korrekciós együtthatói l – profilhúr hossza. (A méreteket általában dm-ben számoljuk)

Indukált ellenállás tényezőjét a következő képlet szerint állapítjuk meg:

    \[C_i_n_d=\frac{c_y^{2}}{\pi\cdot AR}(1+\delta ) = 0,318 \frac{c_y^{2}}{AR}(1+\delta);\]

ahol cy – a profil felhajtó-erő tényezője, δ – szárny alaki tényezője: ellipszis – 0; trapéz – 0,05-0,1… . Képlet alapján kijelenthető, hogy az indukált ellenállás nagysága a felhajtóerő-tényező négyzetes arányban függ, márpedig a szabadon repülő és vitorlázó gépek Cy értéke nagy, ezért indukált ellenállásuk csökkentése modell teljesítménye szempontjából jelentős lehet.

Számos kísérletben kimutatták, hogy az oldalviszony fontos szerepet játszik a felhajtóerő és az ellenállás alakulásában. Ahogyan az a grafikonból is kitűnik, kisebb oldalviszonyú szárny esetében ugyanolyan felhajtóerő eléréséhez nagyobb állásszög szükséges. Az indukált állásszög akár 3-5° is nagyobb lehet végtelen szárny esetében vett effektív szöghöz képest. A grafikonokból az is kiderül, hogy bár a karcsú szárny hatékonyabb a felhajtóerő termelésében, de emellett kisebb állásszögnél esik át. Ellenállás tekintetében a karcsú szárny előnyösebb.

Szárny oldalviszonyának hatása a felhajtó erő alakúlásáraSzárny oldalviszonyának hatása az ellenállásra

Ezután teljesen természetesnek hat az a kérdés, hogy mégis mennyi legyen modellünk AR értéke, de a válasz nem olyan egyszerű. Ugyanis, minél nagyobb az oldalviszony, annál karcsúbb a szárny, annál kisebb az indukált ellenállás (kisebb nyomáskülönbséget kell kiegyenlíteni). Egyúttal, ha ugyanazon szárnyfelület esetén növeljük a szárny karcsúságát, csökken az áramlás lefolyását jellemző Reynolds- szám (rövidül a húrhossz). A következő nomogram gyakorlati kísérletekre támaszkodva, segítséget nyújthat a helyes érték választásában.

A Szárny oldalviszonyának hatása az ellenállásragyakorlatban jól bevált értékek a nomogram zöld területen találhatók. Berajzolt minta szerint egy 2650 mm fesztávolságú modell esetén az oldalviszonyt 10,5 és 16,5 értékek között vehetjük fel, az ajánlott értékek azonban 12,5 és 15 közé esnek. Tehát az oldalviszony mindig a modell méretétől függ, és úgy kell megválasztani, hogy a legkisebb szelvényhosszúságú rész is a kritikus Re szám felett repüljön. Ahogy a modell-aerodinamikai kutatások nyomán kis Re-számoknál egyre stabilabb és kellő felhajtó erőt szolgáltató profilok jelennek meg, úgy a megengedett és ajánlott terület maximális határai egyre feljebb kerülnek a jelenlegi képhez képest. Figyelembe kell azonban venni azt is, hogy a modellünknek mekkora a káros ellenállása – a modell nem emelő részeinek az összesített ellenállása. Nincs ugyanis értelme az indukált ellenállás végtelenbe menő csökkentésének, ha nagy a modell káros ellenállása. A teljesítmény vitorlázók káros ellenállása igen kicsi a többi modellhez képest (nincs légcsavar, nincs hengerfej, stb.), így az indukált ellenállás a modell összellenállásának a felénél is nagyobb lehet, ezért ilyen modelleknél indokolt az indukált ellenállás-csökkentés.

Erő hatására a szilárd testek méretüket, alakjukat megváltoztatják. Nincs ez másként a szárny esetében sem. A szárny igénybevétele a szárnytőnél a legnagyobb. Ezért nem minden merevítőt szükségeltetik végig vinni a szárny teljes hosszán, a borítást is vékonyabbra lehet készíteni a szárny vége felé, ezáltal könnyebbé téve a szárnyat. Ezért aerodinamikai, de legfőképpen szerkezeti okok miatt gyakran alkalmaznak trapéz formájú szárnyakat vagy szárnyvégeket. Három okunk is lehet, miért válasszuk a trapézformát: rövidebb a szárnyvégprofil húrja, és ezáltal az indukált ellenállása, egyenletesebb a felhajtóerő eloszlása a téglalap formajuhoz képest, különösen nagyobb állásszögeknél, könnyebb. Nagyméretű gépeknél trapéz szárny különösen ajánlott. Ezen szárnyak egyik jellemzője a λ trapézviszony– a legkisebb és a legnagyobb szelvényhúrok viszonya.

\lambda = \frac{l_v}{l_t},

ahol lv – a szárnyvég profijának húrhossza, lt – szárnytőprofil hossza.

A véges szárnyon végbenő állandó nyomáskiegyenlítés és oldalirányú áramlás miatt egy véges téglalap alaprajzú, elcsavarás mentes szárnyon a felhajtóerő nem oszlik el egyenletesen, hanem a szimmetriasíktól a szárnyvégek irányába haladva fokozatosan csökken. Ugyanakkor a leáramlás sebessége, az indukált ellenállás nő a szárnyvégek irányába. Ez azt eredményezi, hogy teljes azonosság ellenére a véges szárny közepes cy kisebb a végtelen szárny értékéhez képest. Az erők eloszlásának ismerete repülőgép tervezés szempontjából nagyon fontos.

[kép]

Az 1930-as években eleinte empirikus módon, trapéz szárny lekerekítése útján, később pedig Prandtl áramlástani elméletére támaszkodva, matematikai alapokon is bebizonyították, hogy az elliptikus szárnyforma szolgáltatja az optimális aerodinamikai viszonyokat: a felhajtóerő a szárnyvégek felé haladva csökken nullára, a leáramlás pedig állandó szárnyvégtől szárnyvégig. cind=cy2\πΛ képlet alapján az indukált ellenállási tényező ekkor a legkisebb.
Ilyen szárnyaknak az a hátránya, hogy bonyolult a megépítésük, hiszen bordapáronként újra kell tervezni a szelvényeket. Ezenkívül nem csak a felülete ívelt, hanem a be- és a kilépőél is, átesésük hirtelen következik be, és eközben a csűrő felületek hatékonysága is jelentősen romlik. Ezért a gyakorlatban inkább a tégla és a trapéz, illetve ezen formák kombinációjából származó szárnyak dominálnak. Azonban az elliptikus formától való eltérés a hatékonyság romlásához vezet. Belátható, hogy a szárny eltérő formái eltérő hatást gyakorolnak a folyamatok lefolyására, vagyis a tervezésnél számításba kell venni.

A véges terjedésű szárny ellenállása két részből áll: profil- és indukáltellenállásból, ezért az ellenállás tényezőjét a következő formula adja:Szárny összes ellenállása

c_s_z= c_x + \frac{c_y^{2}}{\pi\cdot AR}(1+\delta) \approx c_x + 0,318 \frac{c_y^{2}}{AR}(1+\delta);

ahol cy – a profil felhajtóerő-tényezője, cx – a profil ellenállás-tényezője, δ – szárny alaki tényezője: ellipszis – 0; trapéz – 0,05-0,1… .

Az összesített szárny grafikonjából azonnal kitűnik, hogy létezik egy olyan v sebesség, amik az alaki és az indukált ellenmállás egyforma, és akkor az összesített szárny ellenállása minimális. Az eddig elmondottak alapján indukált ellenállás annál kisebb, minél nagyobb a szárny oldalviszonya és kisebb a felhajtóerő tényező.

Profilok, diagramok, tulajdonságok

By , 2012. September 12 10:37

Lilienthal-féle poláris görbe A szárnynak tehát az a rendeltetése, hogy a repülőgép levegőben tartásához szükséges felhajtóerőt termeljen (Végtelen szárny aerodinamikája). Ennek az erőnek a létrejötte és nagysága a szárny geometriai kialakításától függ. A szárnyszelvények lehetnek szimmetrikusak, aszimmetrikusak, íveltek, S-formájúak és mind más-más tulajdonságokkal bírnak. Bár sok modellkészítő nem tartja feltétlenül szükségesnek egy új profil keresését a modellje számára, különösen, ha túl van motorizálva a masina, mert az nagyszerűen repül a régi szárnyprofillal és annak nagy ellenállása még hasznos is lehet leszállás közben. Azonban a vitorlázó gépeknél – ahol az egyetlen hajtóerő a gravitáció –, fontos szerepet kap a hatékonyság. Különösen igaz a megállapítás, ha még versenyeznek is a modellel.

Poláris diagram. Ahogy azt láttuk, hallottuk, éreztük már, eltérő állásszögeknél a levegőben haladó testen ébredő eredő erő is más. A profilok tulajdonságainak ilyen jellegű vizsgálatát először Otto Lilienthal kutató naplójában figyelhettük meg egy diagram formájában, mely egy ívelt szárny felhajtóerő nagyságának alakulását ábrázolta a légellenállás függvényében eltérő \alpha állásszögek mellett. Az állásszög sajnos nem mindenhol jelenti ugyanazt. Leggyakrabban a légáramlás irányvonala és a profil húrja által bezárt szöget értik, néha azonban a húr helyett az alsó alátámasztó vonalat veszik figyelembe. Ezért mindig tisztázni kell, mielőtt belefogunk a számolásokba, még ha az eltérés nem is olyan nagy.

Légcsatornás mérések eredményeként általában három grafikont kapunk melyek a felhajtóerő Cy, (néha Cf, Cl-ként jelölik ), ellenállás Cx (Ce, Cd) és nyomaték Cm alakulását ábrázolják különböző állásszögek függvényében. Mivel az ellenállás és a felhajtóerő változása nagyságrendekkel eltér, ezért a felhajtóerőt egy nagyságrenddel nagyobb skálán ábrázolják. A nyomaték ábrázolásánál a skála úgy van felvéve, hogy a pozitív értékek a belépő él felfelé, a negatív értékek pedig lefelé való tolásának mértékét mutatják.
Gyakran a felhajtó erő és az ellenállás viszonyát egy görbén ábrázolják. Ilyenkor a légerők eredőinek vektorait (Fr – jobb oldali képen szürke nyíl) rajzoljuk fel értelemszerűen úgy, hogy minden kezdőpontja az origóban legyen. Összekötve a különböző állásszegüknél kapott vektorok végpontjait, egy poláris görbét kapunk. Zsúfoltság elkerülése végett a Cx, és a Cy itt is eltérő léptekkel viszik fel a tengelyekre (általában 1:10-hez arány követendő). Így a diagram áttekinthető és jól kezelhető. Az előző cikkben bemutatottak alapján belátható, hogy vektorok vízszintes tengelyre dobott vetülete adja a Cx, függőleges tengelyre pedig a Cy tényezőket.

Profil diagramok Poláris diagram

Ezen diagramokból sok hasznos információt nyerhetünk ki. Első ránézésre meg tudjuk állapítani, mi a felhajtóerő legnagyobb és legkisebb tényezője (Cy=f(α) minimuma és maximuma), milyen állásszögeknél kapjuk ezeket az értékeket (αkr). Azonnal szembetűnik az is, hogy a példában vett aszimmetrikus szárny legkisebb ellenállását nem 0°-nál kapjuk, hanem szimmetrikus szárnyprofiloktól ellentétben, attól kisebb állásszögnél. Az is megfigyelhető, hogy az állásszög növelésével a szárny ellenállása eleinte csak kis mértékben, utána körülbelül 6°-8° környékén elkezd fokozatosan, αkr kritikus szög közelében pedig meredeken nőni. Eközben a felhajtó erő meredek, majdnem lineáris növekedést mutat, és csak a kritikus szögnél lapul. Minél meredekebben emelkedik a görbe, annál nagyobb az 1° állásszögváltozásra jutó felhajtóerő változás. Kritikus szöget elérve az áramlások a szárny nagy felületéről leválnak. Ekkor a felhajtó erő hirtelen lecsökken, az ellenállás megnő, a szárny átesik. A legjobb siklószám és merülősebesség ugyanazon szárny esetében nincs ugyanannál az állásszögnél és egy pár extra vonal megszerkesztését igényli majd.

A legkisebb merülősebességet nagyobb állásszögnél érjük el, mint a legjobb siklószámot. Egy adott profil alkalmazása esetén elérhető legjobb siklószám értékét a kezdőponttól a polárgörbéhez húzott érintő adja meg. Az érintkezési ponthoz tartozó cx és cy értékeket elosztva kapjuk a legjobb siklószámot, a cy/cx itt a legnagyobb, a eredő légerő vektora ezen a ponton zár be a legnagyobb szöget az áramlás irányához képest. A legkisebb merülősebesség (és ezzel együtt a legkisebb siklószöget) úgy kapjuk, hogy egy érintőt keresünk a görbéhez, melynek a Cy metszési pontja pont 1/3-a az érintkezési pont cy értékének. Ezen a ponton a cy3/cx2 emelkedési szám éri el a maximumát.

Negatív tartományban ugyanez a helyzet, ugyanúgy megtalálhatók a “jelentős” pontok. Csak más értékeknél, mert a vizsgált profil aszimmetrikus. Szimmetrikus profilok esetében a pozitív és negatív tartományok grafikonjai tükörképei egymásnak. Megvizsgálva a leggyakrabban alkalmazott profiljainkat észrevesszük, hogy állásszög-tartományunk igen korlátozott, nagyjából 3° és 15°közé esik mindkét irányba. Az igazán jó teljesítmények sávja még ennél is sokkal szűkebb.

A szárnyszelvények légerőtani tulajdonságait elsősorban a geometriai kialakítása határozza meg, de ezen kívül számos olyan tényező játszik még közre, amelyeket közelebbről meg kell vizsgálni. Ilyen például a határréteg jellege, szárnyfelület simasága. Megvizsgálva a polárgörbék alakulását lényegében a repülőgép jóságát is megkörnyékezzük. Eltérő profilok grafikonjait összehasonlítva számos fontos megállapítást tehetünk profiljainkkal kapcsolatosan, azonban ezen erők összehasonlítását csak azonos megfúvási sebességnél célszerű elvégezni. Ezen ismeretek hasznosak lehetnek, ha kisebb mértékben igazítani szeretnénk a meglévő profilunkon.

Szárnyszelvény

d a szelvény vastagsága;
xd
a szelvény legnagyobb vastagságának a helye;
τ– kilépő él kialakítása.
f – a szelvény íveltsége;
xf
– az íveltség legnagyobb értékének helye;
r0– belépő él lekerekítésének sugara;

A profil geometriai paramétereit általában százalékban adják meg a húr hosszúságának viszonylatában. Vagyis, ha a szárnyunk profilja 100 cm hosszú, akkor a 18%-os (vagy c=0,18) vastagság abszolút értékben 18 centiméteres vastagságot jelent. Különböző alakú szárnyszelvények légerőtani jellemzőit szélcsatorna kísérletekkel állapítják meg és profilcsaládokat alakítanak ki. A szelvények a nevüket általában az aerodinamikai intézet, néha a kutató személy után kapják: CAGI, NACA, , Benedek. A szelvényeket családon belül számértékekkel jelölik, melyek a főbb geometriai jellemzőket adják meg. Így a NACA23012 nevéből a következő tulajdonságokat olvashatjuk le: íveltség 2%, íveltség maximuma 30%-on, vastagsága 12%, de a számozás családfüggő!

Felhajtó erő, ellenállás, nyomásközéppont és a Reynolds szám kapcsolata. (Re) – egy dimenzió nélküli szám, mely a kísérletben kialakított, és a gyakorlatban alkalmazott szelvény geometriai és áramlástani hasonlóságát adja meg. Profilok összehasonlításában nagyon fontos szerepet játszik, hiszen eltérő Re számoknál nem csak mennyiségi, de minőségi változásokat is figyelhetünk meg a szárny reakciójában. Mivel a szám sok paramétertől függ, és minden minden pontra figyelembe venni szinte lehetetlen, így közelítő számolást érdemes csak elvégezni nagyságrend meghatározása céljából, figyelembe véve, hogy a levegő átlag sűrűsége \nu=14,4·10-6 m2/s (15°C, 1013,2 mbar). Ezt követően a számot a test hossza (húr hossz) és áramlási sebesség (repülési sebesség) ismeretében könnyedén meghatározható. Belátható, hogy a modellrepülőgépek szempontjából a Re szám tartománya körülbelül 50 000 és 700 000 érték közé esik.

    \[ Re=\frac {lv\rho}{\mu}=\frac{lv}{\frac{\mu}{\rho}}=\frac{lv}{\nu}\approx 6,94\times 10^{4} lv\]

ahol \rho – a közeg (levegő) sűrűsége (kg/m³); \mu – az anyagra jellemző dinamikus viszkozitás (Pa·s), \nu – a kinematikai viszkozitás (m2/s), l – a húr hossza (m), v – az áramlás sebessége (m/s).

Aerodinamikai kutatások korai szakaszában már kimutatták (1937, NACA rep.: 586), hogy a hasonlósági mutató értéke jelentősen befolyásolja a maximálisan elérhető felhajtóerő értékét, a szárny ellenállását és a profil átesés körüli viselkedését. A kísérletekben megfigyelték, hogy az állásszög növelésével a felhajtóerő azonos sebességgel növekszik ugyanazon profil esetében (függvény görbéje ugyanolyan meredek). Azonban nagyobb Re számnál a felhajtóerő maximuma és az átesés is nagyobb állásszögnél következik be. Általában elmondható, hogy ha a profil jól teljesít alacsony Re számnál, akkor a magasabb tartományban sem lesz vele gond. Profil vastagság hatása a tulajdonságokra

A geometriai kialakítás és a tulajdonságok alakulása. Egy szárnyszelvény olyan jellemzői, mint vastagság (d), íveltség (f), azok maximumának relatív helyei (xd, xf) és a belépő él lekerekítésének sugara döntően befolyásolják a profil légerőtani tulajdonságait. Ezek közül talán a profil vastagságának a hatása a legegyértelműbb, hiszen ha vastagabb a profil, akkor a homlokprofilja, vagyis az áramlással merőleges vetülete nagyobb. A vastagság növekedésével azonban az ellenállással együtt a felhajtó erő maximuma is nő. A vastágsággal és annak maximális értékének helyét változtatva megváltozik a profil orrának lekerekítési sugara is, és ez elsősorban az αk – kritikus állásszög környékén érezteti hatását. Ha ugyanis a lekerekítési sugár nagy, akkor az áramlatok nem válnak le hirtelen a szárny egész felületén, hanem a leválási pont fokozatosan halad a profil orra felé. A hegyesorrú, és általában vékonyabb profilokon, az áramlás zavartalan egy bizonyos szögig, utána lavinaszerűen leválik az egész felületen, hirtelen ellenállás növekedést és felhajtóerő csökkenést idézve elő. NACA 0006 profil esetén Re 70 000 számnál átesés körülbelül 5°-nál következik be. Átesés utáni felhajtó erő növekedés a szárny alatti nyomásnövekedéssel magyarázható.

AProfil vastagság hatása a tulajdonságokra kísérletek tisztább képet nyújtottak arról is, miként viselkedik a szárny átesés előtt és legfőképpen utána. Lényegében átesés három főbb formáját különböztettek meg: hirtelen, éles és fokozatos átesés és természetesen ezek között számos átmenet létezik (lásd N60 profil tulajdonságait különböző Re számoknál). Eközben megfigyelték az átesés hiszterézis tulajdonságát is, mely azokra a profilokra jellemző, amelyeknél hirtelen felületi vonalvezetés változás (másként fogalmazva kis sugarú lekerekítés) található. A hiszterézis lényege, hogy az átesés után vissza is visszük a szárnyat az átesés előtti szögbe, az áramlások, és ezzel a felhajtóerő nem nyeri vissza eredeti értékét, míg a kritikus állásszög alá nem visszük a szárnyat. Egyes profilok különösen hajlamosak erre a “hisztire”, különösen, ha egy felületi maximumot egy hosszabb egyenes, vagy süllyedő (konkáv) szakasz követi.

Szimmetrikus profilokkal viszonylag alacsony maximális felhajtóerő érhető el, ezért csak a műrepülő repülőknél alkalmazzák illetve stabilizátorok kialakításánál. Az íveltség kialakításával, és annak értékének növelésével az elérhető felhajtóerő értéke is arányosan nő. Egy ilyen profil ellenállás-tényezője is kisebb, mint a hasonló vastagságú szimmetrikus profilé. Ezért a felhajtóerő növelése érdekében a középvonal íveltségének növelése gazdaságosabb megoldás. Hogyha különösen nagy felhatóerő-tényezőre van szükségünk kis sebességnél, akkor az íveltség maximumát célszerű a húrhossz utolsó harmadába helyezni. Az erősen ívelt profilok hátránya, hogy maximum elérése után erőteljesen átesnek és nagy a nyomásközéppont vándorlásuk.

Összegezve elmondható, hogy a profil vastagságának növelésével megnyújtja a felhajtóerő görbét Cy irányában, így nagyobb felhajtóerőt érhetünk el. Maximum pontjának előretolásával a görbe meredekebbé válik, és kisebb mértékben veszítünk a felhajtóerőből. Mindkét módosítás azonban alaki ellenállás növekedéssel jár előrehozott örvények miatt. Eközben a profil “nyugodtabbá” válik, ami az irányítást könnyebbé, kiszámíthatóbbá teszi. De hogy a vékony profilokat is dicsérjük, meg kell jegyezni, hogy alacsony Re számnál (30 000 környékén) és kis állásszögeknél a vékony profilú (~6%) vagy lapszárnyú gépek jobban teljesítenek, mint a gömbölyded társai. Analitikai módszerrel összehasonlítva sikerül kimutatni, hogy 200 000 értékig a vastag, 14-18% szelvények használhatóak sikeresen, de kezdve a 100 000 értéktől a többszázas tartományig a 8-12% vastagságú profil a preferált. Az íveltség fokozása pedig felfelé tolja a polárist, így a negatív tartományban kedvezőtlenebbül viselkednek. Ezért az ívelt profilok kevésbé alkalmasak a műrepülő gépek szárnyainak kialakítására. Mivel egyik érték sem növelhető korlátlanul tulajdonságok romlása nélkül, ezért az optimális választás körülbelül 10% vastagság és 2% íveltség környékén van, ahol cy/cx a legnagyobb értékeket vesz fel.

Minél nagyobb az íveltsége a profilnak, annál nagyobb a nyomásközéppont vándorlása, és annál nagyobb fogatónyomaték ébred a szárnyon, ami nagyobb stabilizátorokat igényel a kompenzáláshoz illetve változó megfúvásnál jelentős minőségi változást okoz. Nagyon ritka az egyszerű körszegmens formájú középvonal, általában bizonyos célnak megfelelően alakítják ki. Matematikai modellekre épülő profilok középvonala általában valamilyen szabályt követ. Például a NACA négyjegyű sorozata profiljainak középvonala két parabola szegmensből van képezve, melyek tangenciálisan vannak összekapcsolva a legmagasabb íveltség pontjában. Ezert a NACA profilokat nem csak íveltség magassága és helye alapján osztályozzák, hanem a középvonal sorozatokra is bontják. A legnépszerűbb a A=1 középvonal, mely egyenletes terheléseloszlást biztosít a profil mentén. A téma mélyebb megismeréséhez érdemes saját profilokat készíteni és elemezni tulajdonságaikat profilszerkesztő és elemző szoftverek segítségével (MacFoil, Airfoilplot, Compufoil, Xfoil, Profili).

A vastagság helyének módosításáról annyit kell tudni, hogy hatással van a lamináris áramlás megmaradására, ugyanis ez az áramlás marad, míg csökken a nyomás (vastagszik a profil). Nyomás növekedésével átvált turbulensé, melynek ellenállása nagyobb. Hagyományos szelvényeknél a lamináris áramlás a maximum a húrhossz 30%-áig tart ki. Ha azonban a maximális magasságot hátrább toljuk, a lamináris határréteg akár a húrhossz 40-60%-áig is kitart. Arra a kérdésre, hogy hol helyezkedjen el az íveltség maximuma,  a legnagyobb vastagság helye adja meg a választ. A gyakorlat azt mutatja, hogy ha a profil 30%-nál a legvastagabb, akkor az íveltség legkedvezőbb helye körülbelül a húrhossz 40%-ánál keresendő, a profil vastagsága a húrhossz 50%-ánál tetőzik, akkor az optimális íveltség helye 45% környékén keresendő.

Egy-két konklúzió az elméleti anyagból: 1. A jó átlagteljesítményt a minimális merülési sebességre való törekedéssel, vagyis minimális terheléssel és maximális cy3/cx2emelkedési szám elérésével tudjuk biztosítani. Az emelkedési szám csak profil, állásszög és Reynolds szám függvénye. Ezért a vitorlázó modellek teljesítménynövelő lehetőségei a megfelelő profil, maximális cy/cxértékhez tartozó állásszög beállítása és hogy a modell a kritikus fölötti Reynolds-számmal repüljön. 2. Vitorlázók számára alacsony ellenállás és forgatónyomaték alacsony Rn szám mellet nélkülözhetetlenek. Műrepülő gépek számára szimmetrikus profil alacsony Cm értékkel a jó választás fokozatos átesési tulajdonsággal a szűk fordulók miatt. Emellett maximális Cy értéket kell keresni, ami csak elérhető.

Vákuum szivattyú hűtőszekrényből

By , 2012. August 22 09:18

Már korábban is megfordult a fejemben, hogy jó lenne építeni egy kompresszort szórópisztolyhoz, de mivel rossz volt a motor, család meglepett egy “igazi” kompresszorral: nyomáskapcsolóval, tartállyal, csövekkel. Így a gondolataim eltávolodtak a témától, de most megint előjött üvegszálas laminálással kapcsolatosan, de most akompresszor másik vége kell.
Hazafelé tartottam egy nap egy lomtalanítási területen át, és megpillantottam őt, olyan kicsi, és magányos volt ott, a leselejtezett hűtőben. Hoztam is azonnal. Egy kis bogarászás után találtam egy videót a videómegosztón. Első kapcsolatnak tökéletes.

Belső felépítése: a leforrasztott burok alatt egy 2 tekercses motor helyezkedik el. Az elsődleges tekercs hajtja a motort normális üzem során, a segéd tekercs csak az indításnál szükséges; starter jellegű feladata van. A motor rotorja spirális csatornával van ellátva, és az viszi fel az olajat a karter aljáról és teríti szét a tetején, biztosítva a szükséges hűtést és az alkatrészek kenését (részben ezért a hűtők indítása nem ajánlott 5°C alatt). A tengely meghajt egy dugattyút, mely folytonos sűrítést és ritkítást végez, míg a szelepek a megfelelő nyomást a megfelelő rézcsőhöz irányítják.

Elektronika: a motor indításához az elsődleges tekercs nem elegendő. Ahhoz, hogy elinduljon a motorunk, szükség van a másik tekercs rövid-idejű aktiválásához. Legegyszerűbben egy nyomógombbal oldható meg. Hűtőszekrényekben ezt egy relé végzi, melynek elektromágnese sorba van kötve az elsődleges tekercsel és úgy van beállítva, hogy bekapcsoláskor a többletáram aktiválja, de az üzemi áram nem elegendő a behúzáshoz. Ez aktívája a relét, az bekapcsolja a másodlagos tekercset, amely elsődleges tekercsel együtt mozgásba lendíti a rotort. Erre az felvett áram üzemi értékre esik, és a relé kikapcsol. Na de mi a helyzet akkor, ha indulna a motor, de a másodlagos tekercsben szakadás van, a bekapcsoló relé beszorult és nem aktiválja a másodlagos tekercse, vagy éppen nem tudja lekapcsolni a másodlagos tekercset? Ilyenkor a motor melegszik. Hogy baj ne történjen, van a motorban egy őrszem, egy bimetál lemez, mely bizonyos érték főlőt bonja az áramkört és amikor a motor kihűlt, a folyamat kezdődik előröl. Ezért nem célszerű relé nélkül üzemeltetni a motor. Kikapcsolásról nekünk kell gondoskodnunk, de építhetünk hozzá automata kapcsoló is (a hűtőben egy hőkapcsoló gondoskodik erről).
Kompresszor Kompresszor tekercsei 02490
Átalakítás problémái: a legnagyobb problémát az okozza, hogy a motor nem “nyitót” rendszerre van tervezve. Zárt rendszerben üzemelve az olaj nem kap oxigént, így nem is savasodik, nem teszi tönkre a tekercsek lakkját. Ha a kompresszor valamelyest ki is fújja az olajat, zárt rendszernek köszönhetően az egyszer úgyis visszakerül a motorba. A port, vizet mint szennyező anyagot már nem is említem. De a gyakorlat azt mutatja, hogy van remény. Bár kétségtelenül nem lesz örök életű, de hobbi felhasználás mellett ez akar tíz évet is jelenthet. Íme pár megoldás:
DIY Silent Compressor

DIY Mini Silent Compressor

Most, ahogy a cél és a lehetőségek tisztázottak, neki lehet látni a munkának.

Motor tesz. Tehát, ahogy már volt róla szó, ez a motor két tekercses, de az egyikre csak az indításnál lesz szűkség. Ha a motorról lehántjuk az relét, akkor előkerül a három kivezetés. Méréssel megállapítható, mely a közös, és mely a két független érintkező (általam mért értékek az érintkezők között: 40, 35, 75 Ohm ). Ha visszahelyezzük a relét, akkor a háromszögben elhelyezett érintkezők közül a felső (közös) egy fekete cilinderes formájú hőrelé egyik érintkezőjével, a bal alsó pedig közvetlenül a tápkábelre van kötve. A két alsó tű között egy érme nagyságú PTC található, mely kapcsolja a másodlagos tekercset, és indul a motor.

kompresszor-01 kompresszor-02 hőbiztosíték kondenzátor kompresszor-05

Vizsgálgatva a motort, rájöttem, miért dobták ki a hűtőt – megadta magát a PTC.  -85 kPa-on túl Ideiglenesen pótoltam egy gombkapcsolóval. A kapcsoló kivezetéseit kétoldalú nyáklemezre forrasztottam, így az eredeti kapcsoló helyére akadálymentesen behelyezhető lett. A kapcsolónak csináltam egy kis helyet a külső borításon. A szívó csonkra húztam egy szilikon csövet, annak másik végére vákuummérőt. Eljött az igazság pillanata, megérte-e vesződni vele? Bedugtam a konnektorba a villát. A motor enyhén morog, de még nem indult el. Megnyomtam 1 másodpercre a gombot. A motor enyhén megrebbent, és hallani a sziszegést. Alig hallható a motor járása, de működik! A nyomásmérő mutatója határozottan elindult a -80kPa irányába, és hamarosan el is hagyta azt, megállapodva valahol a – 85. érték környékén. Biztató eredmények. Vannak, akik már itt abbahagyják az átalakításokat, de én még szeretnék tenni pár lépést, hogy tovább élvezzem munkám gyümölcsét, ezért a további munkálatok a motor élettettalmának a meghosszabbítását és az automatizálást célozzák meg.

Motor olajozása. A folyamat úgy néz ki, hogy az alján van kb. 2,5-3dl híg olaj (pl. transzformátorolaj, ásványi kompresszor olaj). A motor tengelye belelóg az olajba. Annak a tengelynek a közepén van egy spirális furata. Amikor elindul a motor, a tengely szálija az olajat, és minden kopó alkatrész boldog. Az eredeti olaj nem jó nekünk, mert oxidálódik, és ezután oldja a tekercsek lakkrétegét. Ezért ajánlott kimosni a kompresszort egy kis szintetikus olajjal, és feltölteni újal.

(Folyt. köv.)

FlySky 9x – módosítások

By , 2012. April 12 12:32

És végre itt a várva várt pillanat (na, nem a távirányító számára)! Felfegyverkezve csavarhúzóval, forrasztópákával, új tudással, egy kis türelemmel, meg csipetnyi szabadidővel elkezdjük a beavatkozást (ha eddig még nem forrasztottál smd-t nyákra, talán nem a legjobb pillanat elkezdeni, de ezt mindenki döntse el maga). Akkumulátor maradhat, hat csavar ki, fedlap leszed, 12-tűs csatlakozó dugó gondosan kihúz az alapi foglalatból, és elérhetővé vált a távirányító szíve, pontosabban agya minden létfontosságú szervvel. Na nem kell azonnal kiszedni, meg lobotómiát végezni rajta, csak egy kis bájpassz kerül bele. Ha már egyszer felnyitottuk a gép burkát, akkor több problémát is próbáljunk meg orvosolni.

MODE1-töl a MODE2-ig

Gyakran találkozhatunk a fórumokon azzal a kérdéssel, hogy miben tér el a Mode1 és a Mode2 kialakítású távirányító? A Mode1 olcsóbb, tényleg jobb a Mode2-nél? Lényegében semmivel sem jobb, vagyis alkatrész mennyiségében nem térnek el. A felépítés szimmetriájából adódóan csak pár apró alkatrész került át az egyik oldalról a másikra. Ezek általában kapcsolók, feszítő rugók, fékező lap meg pár csavar. Ezen alkatrészek 15 perc alatt a megfelelő oldalra könnyedén átrámolhatóak. Kell hozzá egy kis csavarhúzó, egy csipesz, meg egy csipetnyi türelem. A lépésekről majd a képek mesélnek:

mode1->mode2 00 mode1->mode2 01 mode1->mode2 02 mode1->mode2 03 mode1->mode2 04 mode1->mode2 05 mode1->mode2 05 mode1->mode2 06 mode1->mode2 06 mode1->mode2 08 mode1->mode2 09 mode1->mode2 10 mode1->mode2 11 mode1->mode2 12

A bal bot függőleges középre-húzó kar rögzítő tűjét húzzuk ki, akasszuk le a visszahúzó rugót. A jobboldali bot féklemezét tegyük át bal bot mechanikájára és állítsuk be a kívánt feszességet csavarok meghúzásával. Jobboldali botnál tegyük helyére a visszahúzó kar rögzítő tűjét, és akasszuk be a rugót a műanyag fülbe. A kar egyik végét tegyük a rugó fülébe, nyomjuk le a kart és szintbe hozva a rögzítő tűvel, toljuk bele a tűt. Ezután már csak a rugók feszességének beállítása maradt hátra.

Szimulátor PPM jel normalizálása

Ha V.2 távirányítónk van, akkor első lépésként érdemes szimulátorozással kapcsolatos javítást elvégezni. A probléma ugyanis az, hogy ha a frekvencia modult nem lehet levenni, akkor általában a helyén marad és szimulátor használata során sugároz – a szimulátor kábel nem von el annyi energiát, hogy az RF modul ne tudjon inicializálni. Ezért egy kis ellenállással megbolondítva az áramkört el lehet érni a megfelelő feszültségesést. Ehhez megkeressük a megfelelő pályát a frontális burokra (előlapra) rögzített nyáklapon (balról 6. tű a tűsoron) és vékonyan elvágjuk a réz vezető pályát (nem kell gödröt vájni). Egy kis felületen eltávolítjuk a lakkot, hogy forrasztható legyen. Ezután vagy SMD, vagy furat szerelt 1 kOhm nagyságú ellenállást forrasztunk a szakadás áthidalására. Személy szerint az SMD megoldás közelebb áll hozzám, mert tisztább, szebb eredményt ad.

t9x szimulátor mod t9x szimulátor mod t9x_smd_simulator_resistor

Fordított polaritás elleni védelem

És megint valaki fordítva dugta rá a rádióra az akkumulátor, és megint elektromos meghibásodás füstje terjeng a levegőben. Aki megtette, tudja, hogy a 2 másodperc hosszú idő. Sajnos, ezt a számos modellezőnek bosszúságot okozó problémát még mindig nem orvosolták a gyártók. A csatlakozó olyan formájú, amely ugyan előfordul az akkumulátorok világában, de általában a 7,4V LiPo akkumulátorok balanszer végen. És ha azt rádugjuk, azonnal kapunk egy rövidzárlatot, mert a rádió lábkiosztás: [— + —]. Ha pedig JST csatlakozót használunk, könnyű mellényúlni. Az elsődleges megoldás tehát: FIGYELJETEK ODA A POLARITÁSRA!

De ha van egy kis időtök, egy kis műszaki érzéketek, egy forrasztó páka meg egy multiméter, akkor ‘bolondbiztossá’ tehető a készülék. Az első módszer az az aszimmetrikus csatlakozó alkalmazása, mely csak egy bizonyos tájolásban dugható össze. Ez lehet akár egy JST vagy egy fülezett szervó csatlakozó páros.

És ha már megtörtént a baj és az áram az ellenkező irányba megindult. Akkor készüljünk fel arra, hogy akár NÉGY darab feszültségszabályzót és pár elektrolitikus kondenzátort is gajra vágtunk. Nem nagy tétel, de méricskélni, forrasztani kell. Előfordul, hogy akkora áram indul meg visszafelé, hogy felperzseli a nyák áramellátó pályáit.

Legelső alkatrész, mely valószínűleg elfüstöl ilyenkor, az egy tantál elektrolitikus kondenzátor (sárga vagy fekete pici kocka fehér csíkkal). Általában ez egy 226C vagyis 22uF 16V értékű alkatrész. Tartalék miatt használjunk azonos kapacitású de 25V feszültségre szánt alkatrészt ha rádiónk táplálására 3S vagyis 11.1V LiPo akkumulátort használunk.

dsc_2229

Firmware frissítés – elmélet

Aki elérte ezt az oldalt, az már titkon, néha még saját magától is rejtegetve, pátyolgatja a gondolatot, hogy egyszer azért belenyúl abba a fránya távirányítóba, hiszen annyi lehetőség rejlik benne. Sok magánfejlesztésnek köszönhetően új firmware-eket próbálhatunk ki a távirányítónkban, és eldönthetjük, melyik vala kényelmesebb, hasznosabb számunkra. Mivel a fejlesztések többsége open source licenc alatt fut, mi magunk is tehetünk hozzá, vagy éppen elvehetünk belőle, de ehhez kicsit többet kell tudni az eszközökről és a projektekről. Egyes firmware-ek hardver módosítást is igényelnek.

A FlySky 9x távirányító (bár több brand alatt is fut) kemény külseje alatt egy igen szorgalmas és szeretni való kis 8 bites mikroszámítógép ügyködik: egy Atmel ATmega64A. Dicsérhetném oldalakon át, hogy mennyire nagyszerű és strapabíró találmány, de ezt a kis könyvében úgyis jobban leírták az alkotói. Áldott tulajdonsága az önmagát írni való képessége, ráadásul ezt az áramkörbe beültetve is el tudja végezni (ISP). Majdnem elpusztíthatatlan és olcsó – ezen tulajdonságok teszik tökéletes alannyá a kreatív elmével megáldott modellezők számára.

Ahhoz, hogy a firmware-t a mikrokontrollerbe töltsük, össze kell kötnünk egy számítógéppel (ez lehet PC, Mac, vagy egy programozó eszköz). Ehhez 6 lábat kell megkeresnünk a mikrokontrolleren (zárójelben az ATmega64A kivezetés számai): SCK (11), MOSI (12 vagy 3 [Tx]), MISO (13 vagy 2 [Rx]), RESET (20), GND (63), VCC (64). Hogy a feszültséget és az időzítéseket megfelelő szinten tudjuk tartani, egy programozót is közbe lehe iktatni. Ilyenkor a számítógép valamilyen módon átadja a firmware bináris kódját a programozó eszköznek, és az gondosan ügyelve a megfelelő feszültségekre az időzítésekre adagolja a mikrokontrollernek. Munkánkhoz lényegében bármelyik AVR programozó eszköz megfelel, mely ismeri az ATmega64a mikrokontroller speciális igényeit, de ha ajánlhatom, legyen AVRdude kompatibilis. Sok AVR-piszkáló program ezt a kis parancssoros programot használja a háttérben és szintén open source:), – futtatható mind Windows mind Linux környezetben, támogatja a COM, az LPT és az USB portokra kötött programozó eszközök hadát, ráadásul, a támogatása is jó.

atavrisp

Talán a legegyszerűbb programozók a soros és párhuzamos portra köthető egységek: nem igényelnek speciális drivert, de oda kell figyelni a lábkiosztásra, és megbosszulhatják, ha hibázunk. USB ISP-k ugyan igényelnek drivert, de elláthatják árammal a programozandó eszközt.
párhuzamos port. Ha biztos a kezünk, elég lesz pár 220 Ohmos ellenállás. Ha rákeresünk a témára, ezerszámra jönnek a találatok. Egy példát én is bemásolok, de könnyű kiereszteni a portból a füstöt, ezért más megoldást javaslok.
soros portra köthető egység elkészítése sem igényel atomfizikusi diplomát. Részletes leírását a diy4fun oldalán találtam. Az eszköznek összköltsége nagyjából egy gombóc fagyi árával mérhető, és egy órányi munkánkba kerül. Ha sikerült összerakni, kell hozzá egy soros port a PC-n, vagy egy USB-RS-232 átalakító, egy program, – mondjuk PonyProg vagy AVRdude és hozzá AVRdude GUI. A program menüjében válasszuk ki a megfelelő eszközt: SI Prog API vagy ponyser és akkor már flesselhetünk is.
USB port. AVR Pocket Programmer (driver), USBTinyISP, mySmartUSB light és a modellezők körében igen népszerű: USBasp. Ráadásul nevetségesen olcsó. Végiggondoltam, hogy mennyi idő kell egy egyszerű programozó összerakásához, és végül rendeltem egy USBasp-t. Érdemes ezenkívül még megtekinteni még a WinAVR illetve az AVR Burn-O-MAT programokat. Hasznos társaink lehetnek a jövőben.

A következő módosításokat mindenki a saját felelősségére végezze, semmilyen garanciát nem vállalunk a módosításokért!
A távirányítóban elvégzett módosítások garanciavesztéssel járnak!

Aki átlép ezen a küszöbön, magára vessen :). Innen nincs visszaút, mert minek is mennénk vissza a sötét középkorba.
A programozó bekötéséhez célszerű csatlakozóra kivezetni a szükséges lábakat, és azt egy biztonságos helyen beépíteni a távirányító dobozába. Ehhez megkeressük az ISP-hez szükséges vezetékeket. A távirányító alaplapján, a mikrokontrollertől balra (felirata alapján), közelebb a távirányító talpához találunk ezüst pöttyöket: teszt vagy programozó padok (FlySky V.1.x alaplapján sajnos nem jó helyre kerül az egyik potty, így le kell majd kaparni a lakkot az egyik pálya kis szakaszán). Ezen lakkmentes területekre forrasszuk a vezetékeket, és egy csatlakozóba összefogva őket kivezetjük. Mivel a mikrokontroller két kommunikációs porttal is rendelkezik, így egyes esetekben lehetnek eltérések a bekötésben, de a következő az általános:

ATmega64 TQFP ATmega64 id_v2 ATmega64 SPI ISP-connector ISP-connector ISP-connector

Ezzel a készülékünk készen áll a szoftver frissítésre. De még mielőtt a firmware bugyraiba belevetnénk magunkat, és a távirányító is a boncasztalon van, nézzük meg, mit tehetünk még a távirányítónk jobbá tételéért.

FlySky 9x – lélektan

By , 2012. April 8 12:38

Számomra a távirányító legvonzóbb része a szoftver, és annak folyamatos szabad fejlesztése. Sokan készítenek videókat, írnak cikkeket a készülék használatáról, megoldásokról és trükkökről. A párhuzamos fejlesztések megtették a jótékony hatásukat és mára egy tucatnyi új firmware (elektronikai eszközt vezérlő mikroprogram) létezik, ráadásul ezeket mi magunk is módosíthatjuk, beírhatjuk az eszközbe. Ezzel a távirányítónk új tulajdonságokra, tudásra tesz szert, ezzel válik jobbá, kényelmesebbé, hasznosabbá számunkra (módosított menü, új mixek, telemetria, PPM csatornaszám, moduláció iránya, frame/keret hossz stb.). A kreatív modellezők nem csak firmware-t, hanem a hardver részét is átépítették. Egy ilyen alaplap sajnos többe kerül, mint egy komplett rádiószett. De nézzük előbb, mi rejtőzik a műanyag bőr alatt.

A készülék lelke egy Atmel ATmega64A 8 bites mikrokontroller, mely rendszeres időközönként leolvassa a potméterek (3+4), kapcsolók (7), trimerek (4) és gombok(6) állapotát/helyzetét, kiértékeli a mixfüggvényeket, előállítja a PPM jelet és kezeli a 128 x 64 pixeles molochrom LCD kijelzőt. A következő ábra a működési elvet mutatja be (távirányító beállítása nélkül):

FlySky kapcsolók

A rendszer kétféle bemenetet fogad:
1. analóg – potméterek, botkormányok – alapvetően feszültségváltozást idézünk elő mozgatásukkal, amit az analóg-digitális konverter egy bináris számmá átalakít (-512 és 511 érték között). Mivel minden potméter egy kicsit más, ezért a végállások meghatározásához kalibráció elvégzése szükséges (pl. szoftverfrissítés után).
2. digitális – kapcsolók, gombok – bináris értékű adatot szolgáltatnak: (On-Off, a háromállású kapcsoló két kapcsoló egyesítésével hozták létre).

Kezdjük talán a legfontosabbakkal (rajzok, jelölések MODE2-re értendőek).

— potméterek:

  1. AIL – csűrő
  2. ELE – magasságkormány
  3. THR – gázkar
  4. RUD – oldalkormány
  5. P1 – potméter – Hov.Pit
  6. P2 – potméter – Hov.Thr
  7. P3 – potméter – Pit.Trim, AUX2
  8. (a nyolcadik ADC port a feszültség mérését végzi)

Ezen analóg bemenetek digitalizálás után átesnek egy normalizáláson, amely a kalibrációs adatok alapján a kapott értékeket a megfelelő számtartományba helyezi. A botok adatait ezután még egy Dual Rate és Expo szűrő tovább igazítja.

Dual Rate (D/R) – gyakran kettős kitérítőnek nevezik, bár szerintem, nem adja át azt, amire használják. Lényegében a szervók maximális kitéréseinek korlátozására szolgál. Lassú repülésnél lehet 100%, ha nagy sebességgel haladunk, akkor a 60% is elegendő a manőverek végrehajtásához. (egy szorzóról van szó, melyet a függvényparamétereknél használjuk)
Expo – alapvetően a szervók lineárisan követik a irányító botok mozgását. Ennél kényelmesebb és precízebb irányítás nyújt az exponenciális követés: a közép vagy minimum állapot körnékén kevésbé érzékeny, kisebb kitérést, finomabb mozgást tesz lehetővé, míg a végálláshoz közelítve egyre erőteljesebb reakciót vált ki.

dr-expo

— kapcsolók, gombok:

  1. T.Cut – motor leállító
  2. Rud.D/R – oldalkormány kitérési tartomány váltó
  3. Ele.D/R – magassági kormány kitérési tartomány váltó
  4. F.Mode – (AUX 3), 3-állású repülési mód választó kapcsoló (ID0 – a felső, ID1 – középső, ID2 – az alsó pozíció)
  5. Ail.D/R – csűrőkormány kitérési tartomány váltó
  6. Gear– futómű kapcsoló
  7. TRN – oktató kapcsoló (rugós visszatérítésű)

Trimerek – 2-2 gombkapcsolóval ellátott csúszkák, melyek segítségével ofszet hozzáadást végzünk, vagyis elmozdítjuk valamely irányba a karok középértékét. Gázkar esetében a minimális érték körüli eltolást végezzük a trimmelő kar segítségével. A szélső kar kitérésekhez közelítve a trim hatása csökken és maximális kitérésnél egyenlő a nullával (-31 – 32, de elérhető az 512 is 4-foku polinóm segítségével).

SW1 .. 6-os – Speciális szoftveres kapcsolók, melyek segítségével kijelző képét, távirányító és modellünk beállításait elérjük el, változtatjuk (ezekről és még sok-minden másról bővebben a er9x projekt magyar leírásában olvasható).

flysky-flow
Adatok feldolgozásának folyamata a FlySky távirányítóban.

Mixer – függvényék, paraméterek, változók rendezett halmaza, – ez a mag, mely összeköti a szoftver egyes moduljait, meghatározza a kimenő adatok értékeit (akár 16 csatorna is lehet!) a bemenő adatok függvényében, elvégzi a bemenő adatok súlyozott kiértékelését, figyel az időzítésekre.
Curve-válaszgörbék, melyek a bemenő és a kimenőjelek közti összefüggést írják le. Áldott tulajdonságuk, hogy csak az összefüggést írják le. Az forrás és a kimenet hozzárendelkezik a mixben történik, ezért ugyanaz a függvény több mixben is felhasználható.
SoftSwitch – szoftveres gombok, funkcionálisan úgy használhatjuk őket, mintha kapcsolók lennének, de nem fizikai kapcsolóval vannak összekötve, hanem logikai feltételeket tudunk rendelni hozza. Ha a feltétel teljesül, akkor bekapcsoltnak, ha nem teljesül, akkor kikapcsoltnak tekinti a rendszer.
SaftySwitch – biztonsági kapcsolók – biztonságos magas prioritású értéket rendelhetünk egy csatornához egy kapcsolón keresztül. Például -125 értéket a 3-s csatornához, miközben állítjuk a többi csatornát, megakadályozva a véletlen elindulást.
Limit – (máshol lehet ATV, EPA, AST) a legjobb esetben a szervók úgy vannak mechanikailag összekötve a vezérszervekkel, hogy azok teljes mozgásterükben szabadon, ütközés nélkül, teljesen kitérnek. Ha erre nincs lehetőség, komputeres rádión korlátozni lehet a kibocsátott jel értékét, ezzel korlátozva a szervó mozgását (pl. az kiküldött maximumok -256 – 255 helyett csak -232 – 231, de lehet aszimmetrikus is – ilyen az EPA). Ezt kétfeléképpen lehet megvalósítani: korlátozzuk a kimenő jel nagyságát (ilyenkor egy holttér keletkezik az irányító karok végállásaiban) és függvényparaméterek súlyozása (AFR) – ilyenkor a jelkeverő függvények bonyolultabbak és nagyobb számítási teljesítményt igényelnek.

Lehetne még többet, részletesebben írni a rádió lehetőségeiről, de ez már megtették mások, így nem folyok bele a többoldalas litániákba. Fontos megemlíteni még, hogy egyes firmware verziókban nincsenek fix funkciójú kapcsolók! Bármelyik kapcsoló bármi lehet. Ami már szintek fantasztikum, hogy a távirányítót számítógépes programon keresztül (compagnion9x, ePee) is tudjuk programozni, modellbeállításokat fel/le-tölteni a készülékbe, meg tudjuk osztani másokkal.

Azok számára, kik szívesen belenéznének a belsejébe, csatolom a kapcsolási rajzot is, bár később még boncasztalra kerül a távirányító.

FlySky 9x – az alapoktól

By , 2012. April 7 15:23

Igazi sikertörténetnek lehetünk szemtanúi. Követve az FlySky\iMax\Turnigy 9x (innentől csak FlySky 9x) távirányító fejlődését, a klónok és az erre a modellre épülő újabb egyéni fejlesztésű rendszerek alakulását. A siker titka talán az Open Source-ban és a hobbi világban egyre nagyobb teret hódító Atmel AVR mikrokontrollerekben keresendő. Talán nem elhanyagolható az sem, hogy a távirányító szett a többihez képest “piszkosul” olcsó. Tény, hogy a külseje inkább egy játékra hasonlít, de be kell vallani, hogy a kis rusnya külső alatt nagy lehetőségek rejlenek.

Pár szó az első kiadáshoz

TR 9x Ha visszaemlékszem a debütálásra, akkoriban úgy tűnt, ez is csak egy próbálkozás létrehozni egy olcsó, 2,4 GHz feliratú távirányító rendszert, amely egy kis morzsát szeretne csippenteni a távirányítók piacának tortájából. A “vén motorosok” addigra (kb. 2009 tavasza) már bizonyítottak és megbízhatóan igazolták, hogy a jövő frekvenciája a 2,4 GHz. Természetesen nem adták olcsón az újdonságot, de szállingóztak az új modulok, új márkanevek (Corona, Assan) és a panaszok az olcsóbb kínai gyártmányú 2,4. rendszerekre. Ilyen körülmények között jelentek meg az első FlySky 9x dobozai a boltok polcain. Ennél a rádiónál már érezni lehetett, hogy a kínai gyártók komolyan gondolják a 2,4 GHz technológiájú felszerelések beszállítását az RC piacokra.

Már az első kiadású 9x rádió olyan szolgáltatásokat/funkciókat nyújtott, melyek eddig csak a drágább testvérekben voltak jelen. A gyártó szerint elsősorban helikopterekhez lett fejlesztetve, de tartalmazta az ACRO (repülő) és a GLIDER (vitorlázó) előre programozott típusokat is. Ellátták bőven kapcsolókkal és tekerőkkel, de személy szerint hiányolom a csúszkákat az oldalán, melyek segítségével könnyedén trimelhető egy vitorlázó a fogás váltása nélkül. A 128×64 felbontású grafikus LCD kijelző, a repülési mód kiválasztása menüből, a JR 9303-hoz nagyon hasonló intuitív menü, melyet 6 gomb segítségével lehet kezelni. Ezen kívűl az ötpontos görbék, a DSSS rendszer (Direct Sequencing Spread Spectrum – csak egy csatornát használ) – még ha nem is olyan ellenálló a mostoha rádiókörülményeket tekintve, mint a Futaba vagy Spektrum rendszer –, a redundáns vevő egység és kétségtelenül az 50 USD alatti ára kedvelt bevezető és teszt rádióvá tették.

Minőséggel kapcsolatos aggályok sajnos nem voltak alaptalanok. A FlySky 9x-et hirdető díszcsomagok többször is lekerültek a boltok polcairól. Természetesen, hibátlanul működő példányok is voltak nagy számban, ami a kínai ipar minőség-ellenőrzés teljes vagy részleges hiányát mutatja. Az alig olvasható, hiányos angol nyelvű leírás, az áramingadozásra érzékeny vevő egység (Ha valamilyen oknál fogva 2,4V alá csökken a feszültség, a kapcsolat bomlik, és az áramellátás helyreállása után sem épül fel újraindítás nélkül.) valamint a FailSafe hiánya negatív bélyeget nyomtak a termékre.

Megjegyzésként csak annyit, hogy olcsó távirányítóhoz olcsó repülőgépet, és akkor nem ér nagy csalódás. Mindennek megvan a maga helye és ideje.Ez egy olcsó, hasznos és kényelmes távirányító, de egy sugárhajtású gépet nem bíznék rá, már ha lenne olyanom.

9x, második kiadás

CX CT9a Eltelt egy kis idő, történt egy kis ráncfelvarrás, egy kicsivel több tapasztalatot szerzett a fejlesztő csapat, és piacra került a már mindenki által jól ismert távirányító második kiadása; kicsit más, kicsit jobb. Miután minden RC csapból is az folyt, hogy tényleg jó, kíváncsi lettem rá. Így én is tulajdonosa lettem egy ilyen rádiónak, annak ellenére, hogy már pár éve egy Futaba rádió a társam a modellezésben.

Megérkezett a nagy és meglepően könnyű csomag. Első ránézésre a régi ismerős, a FlySky 9x, de az új verzión a régi teleszkópos antenna helyett egy 2,4 GHz-es egységet találtam, amely egy “V2” szórt spektrumú, 2,4 GHz-es modullal van egy vezetékkel összekötve, sajnos fixen. Minden esetre érdekes gondolat egy nem levehető modullal ellátott modulos távirányító piacra dobása. :) Ha egy másik gyártó modulját szeretnénk használni (Corona, FrSky, FlyDream, Assan..), akkor elő kell venni a forrasztópákát, vagy a harapófogót. Mi több, az árván maradó antenna inkább zavarja majd az új modul adását, mint sem segítené – érdemes tehát azt is leszedni. Ezen kívül nem sok minden változott a megjelenésében: masszív ház, JR-jellegű menü, kapcsolók és egyéb vezérszervek megszokott helyen és kifogástalanul működnek, bár én még mindig keménynek érzem a gombokat. A súlypont helyzetével nem sokat foglalkozott a gyártó, annak ellenére, hogy most már könnyebb antennát kapott, és ha a nyakunkba akasztjuk, dőlni fog a távirányító felénk. Továbbra is riaszt a rádió, ha a kapcsolók nincsenek alapállásban bekapcsoláskor. Előkerült a csavarhúzó, belenéztem. A forrasztások még mindig nem az igaziak, bár némileg javult a helyzet. Sok helyen látszik a kézi forrasztás nyoma. És mit látnak szemeim: robbanásszerűen szétfröccsent ón. Na, ezt alaposan ki kell majd tisztítani. Van még a dobozban egy vevőegység és más semmi: se akkumulátor, se töltő, se CD, se használati, se szervók. 60USD-ért ennyi jár. Igazából, nincs is szükség rá, csak legyen internet hozzáférés. Mindent megtalálunk ott, amire szükségünk lehet, sőt!

Az új vevőegység szatellit egység nélkül érkezett. Úgy tűnik az “új” FHSS (Frequency Hopping Spread Spectrum) frekvenciaváltós rendszerre bízzák a kapcsolat sorsát. Remélhetően a gyártó kellően megnövelte az egység érzékenységét és a zavarelhárító képességét. A “V1” vevő érzékenysége, ahogy azt korábbi független mérések kimutatták, 9-10-szer alacsonyabb volt a hasonló márkás vevőkhöz képest, ezért szatellit nélkül használva már 100 méter távolságnál időszakos szakadásokat produkált. Az újonnan érkezett rendszer moduljára ugyan rá van írva, hogy FHSS, de hát ennyi pénzért mire lehet számítani? A vevő kereskedelmi ára 9 USD. Megmaradtak a kételyek, de a mérések mindent elárulnak: A rendszer folyamatosan használja a 16 csatornát és a modul teljesítménye is nagyobb. Nos, ez már biztató! Bár, valószínű, hogy még mindig nem olyan megbízható, mint mondjuk a Futaba, a Hitec vagy a Spektrum, de már fényévekre megelőzte az eredeti “V1” rádiórendszert, vagy akár egyes távirányítókat, melyekért akár kétszer annyit is elkérnek.

FlySky DSSS module spectrumFlySky FHSS module spectrum
A vevő belsejében is történt némi változás: egy egyszerű negyedhullámú drótantennát dipólus antennára cserélték, amely kicsit érzékenyebb az elődjénél. Legnagyobb változást talán a folyamatos csatornaváltás fogja hozni a korábbi fixcsatornás működéshez képest, amit korábbi verziónál használtak. Ez a kombináció már jól bevált a Hitech-nél is. Sajnos továbbra is ugyanaz a nem túl érzékeny chip van a vevőben, és semmilyen előerősítőt nem találunk előtte, ami javítaná a vevő teljesítményét. A kristályt sem ártana egy nagyobb SMT verzióra cserélni, mivel az utóbbi kevésbé érzékeny az ütésre (amivel sajnos számolni kell). A párosítást visszajelző LED nagyon mélyen a vevő belsejében világít, mezei körülmények között meg kell küzdeni, hogy észrevegyük a jelzéseit. Maga a párosítási folyamat egyszerű és gyors, csak megfelelő helyre kell illeszteni a “kulcsot” és megnyomni egy gombot a távirányító modulján. Sajnos, ez a verzió sem ismeri a FailSafe fogalmát (csak PCM moduláció esetén érhető el). Bármennyire is szeretnénk, hogy másképp legyen, ez a távirányító még mindig a kis gépekhez való. De ha illesztenénk hozzá egy jobb frekvenciamodult … .

(An)Droid a modellezésben

By , 2012. April 5 08:11

Android OS megjelenése óta rohamos fejlődésnek lehettünk tanúi. A platform nyitottsága jót tesz a fejlődésnek, és végső soron a végfelhasználóknak. Jobbnál jobb programok jelennek meg a már negyedik verziónál tartó operációs rendszer alá és a hardver is szorosan követi, megpróbálják kielégíteni a felhasználók legmerészebb álmait. Végül én is zsebre vaghattam egyet, de számomra ez nem egy divattermék, inkább úgy tekintek rá, mint egy nagy teljesítményű számoló gépre egy kis extrával.

Be kell azért vallanom, hogy már rég szemeztem a PDA-kal, de drágák voltak, HTC Incrediblemire megfizethetők lettek, addigra elévült a tudásuk. Megjelentek az okos telefonok. A jobbik fajtája ezeknek sem olcsó darab, na de egyszer-csak megakadt a szemem egy készüléken, mely talán megéri a pénzét, – Amerikában egy normális telefon áráért lehet venni egyéves HTC Incredible készüléket. Na, mondom, meghívom magamhoz vendégségbe, mert a paraméterei igen jól csengenek a fülemben: 130g, Amoled 16M szín, 480 x 800, 3,7 collos kijelző, 8GB háttértár, 32GB SD-kártya, 1GHz processzor, külön grafikus vezérlő és Android OS.

Megérkezett, kicsomagoltam, — egészen jó: egy aprócska karc a kijelzőn, kaszni hibamentes, van hozzá tartalék akkumulátor — hej, mondom, ezzel majd lehet jampeckodni a mezőn. Sajnos, ezzel nem ér véget a históriánk, mert nem SIM-kártyás a kicsike, vagyis GSM hálózatra nem tudom beregisztrálni csak CDMA hálózatokat támogat, és anélkül pedig nem indul (még), és nagyon akarja a mobil hálózatot. Ehhez bizony kicsit fel kell gyűrni az ingem ujjat.

Kis internetezés után találtam pár “gátlástalanító” ötletet. Mivel írták, hogy hülye-biztos, gondoltam, nekem sem okoz majd gondot.
Készülék aktiválásának kihagyása (csak EPST.apk -t tartalmazó ROMoknál működik):

1. Kezdeményezünk egy vészhívás: ##778;
2. Üssük be  a jelszót: 000000.
3. Válasszuk ki a NAM Settings opciót.
4. Változtassuk meg a Mobile Directory number 0000000000-ra.
5. Változtassuk meg a MIN1 0000000-ra.
6. Változtassuk meg a Mobile Country Code 000-ra.
7. Nyomjuk meg a menü gombot és mentsük le a módosításokat “Commit the Change”.

 Újraindítás után a készülék rendelkezésünkre áll hálózati aktiválás nélkül. Elérhető benne minden jó, kivéve a mobil hálózat. És jön a következő kérdés: mit kezdjek vele? Természetesen ez csak olyan, költői kérdés volt. Internetezés, napló, számológép, idő-járásjelentés, navigáció, és még pár ötlet, melyek hasznosak lehetnek hobbink gyakorlásában:

SimpleFPVMobileFPV – rövidtávu (100m) FPV rendszer helyettesitő;
FrSky Dashboard – telemetria és térkép;
CG Calc v2
, Graham Dyer – súlypontszámoló;
Clinometer
, plaincode™ – vízszintmérő;
Head Speed Tachometer
, ID-Software  – fordulatszámmérő;
RC Tachometer – True RPM, Stefan Scherrer – fordulatszámmérő;
RC-Log Lipo & Flightlog, Stefan Scherrer – LiPo akkumulátor napló;
RC Tools, hcpl – sok jó eszköz egyben;
RCSpeedo, Vesmar Entmt – dopler effektuson alapuló sebességmérő;
RC-Heli-Pitch, Thorsten Wruck – sőgállító kisprogram;
AR.Pro
, Shell M. Shrader – Parrot AR.Drone irányító szoftver;
Droid Tesla
,Vladimir Djokic – elektromos szimulátor;
OsciPrime Oscilloscope Legacy, Nexus-Computing – oszcilloszkóp program;
Android Speedometer
, x-droid – gps alapu sebességmérő;
GPS Compass Map
, EeeNetLive;
Sky Map, Sky Map Devs – kellemes kis program csillagok tanulmányozásához :)
EBookDroid, EM Dev – kis program az olvasnivágyóknak.

További boldogságokhoz kicsit jobban bele kell nyúlni a droid torkába. bootsequence Mivel számomra is új a terület, így kezdem az alapfogalmakkal.

Indításnál, vagy ha szakmailag korrekt akarok lenni, akkor inkább bootolásnál két lehetőségünk van: elindítjuk a teljes rendszer (betöltődik a Linux kernel benne eszközmeghajtókkal, betöltődnek a rendszer könyvtárak, felépül a Dalvik virtuális gép és az alkalmazásokat futtató keretrendszer, végül elindulnak a kedvenc alkalmazásaink) vagy recovery módban megyünk, ahol minimális de karbantartás szempontjából nélkülözhetetlen programok állnak rendelkezésünkre. Recovery lényegében egy kis program, mely rendszerszintű módosításokat végez. Gyári verziója erősen limitált képességekkel bír, de ha kicseréljük egy alternatív szabad-fejlesztésű verzióra, korlátlan lehetőségekre tehetünk szert ugyanannyi felelősséggel (erről később). Az inditási “elágazást” és részben a recovery üzemmód sajátosságait a telefon BIOSa, a boot strap firmware vagy más néven a boot loader adja. Fontos tudni, hogy a gyártók zárat építenek be a bootloader-be, hogy csak a gyártó által kiadott szoftvercsomag fusson a kemény munkával megtervezett, legyártott és programozott termékükön. Ezen zárak feloldása garancia és adat vesztéssel jár, érdemes előtte menteni!

Ahhoz, hogy jobban belelássunk a rendszer belső világában, tisztázni kell a memória felosztás kérdését. Gyakran lehet hallani arról, hogy flesh-selték az Android ROM-ját, noha ez így ebben a formában nem teljesen vagy nem mindig igaz vagy egyértelmű. A androidos mobil eszközök memóriáját általában több részre van tagolva. Az első, és talán kicsit zavaró is, hogy a rádiófrekvenciás modulnak is van saját memória része. Bizonyos esetekben erre a kis területre is tehetünk fel kis applikációkat, melyek akkor is megmaradnak, ha felülírjuk a ROM-ot.

ROM – a telefon belső tárhelye. Több, partícióra is fel van bontva, részben adatbiztossági, részben rendszerbiztonsági okok miatt. Lévén az Android is egy Linux csemete, nincsenek windowsos c:, d:, … meghajtók, hanem a partíciók egy a faszerkezetű fájlrendszerbe állnak össze. Bizonyos folderek (direktóriumok) lehetnek partíciók vagy csak folderek egy bizonyos partíción belül. Általában a BOOT, a HBOOT, a RECOVERY és a SPLASH1 külön partíciókba vannak szervezve és ezeken külön-külön le is tudjuk cserélni egy zármentes készüléken.

  • /boot – tartalmazza a kernelt, az initrd-t és a RAM diszk képfájlját. A kernel határozza meg hogyan működnek együtt az alkotó elemek (Tar Image vagy Zimage)
  • /system – tartalmazza a kernel betöltése után induló rendszer eszközeit
  • /recovery – úgy tekinthetünk rá, mint alternatív rendszerre
  • /data – felhasználó adatokat tartalmaz, RESET ennek a könyvtárnak a törlésével jár, általában ennek a partíciónak a méretét látjuk a telefonban mint belső memóriát
  • /cache – lényegében egy gyorsító tár
  • /misc – kicsit zavaró a neve, de nem hulladékot, hanem egyéb rendszerek és eszközök beállításai tartalmazza KI/BE kapcsolók formájában
  • /sdcard – memória kártyánk könyvtára. Miden ami rajta van a felhasználó akaratából történt
  • /sd-ext – sd kártyánk szeglete, melyet a rendszer belső tár bővítésére használhat. Olyan, másodlagos /data könyvtár

Természetesen, disztribúció függvényében vannak még más könyvtárak is, de ezekre nem térek ki.

Ezen kívül még két memória van a készülékben: RAM – operatív memória, ebben töltődik be a rendszer és a futó programok. Kikapcsolásnál a tartalma törlődik. SD-kártya pedig a cserélhető “külső” memória, adattár, melyre programokat telepíthetünk vagy adatokat menthetünk.

Felszabadítás folyamata

A gyártok számos zárat, lakatot tesznek a rendszerükbe, annak érdekében, hogy egyrészt a saját materiális és szellemi terméküket megvédjék, másrészt a privát és szolgáltatói adatok biztonságos kezelési előírásoknak eleget tegyenek. Ez azzal jár, hogy a felhasználok bizonyos szinten korlátozva vannak, és nem garázdálkodhatnak szabadon a rendszerben. De ahogy ez szokott lenni, erre is van megoldás:) .A zárak feloldása többlépcsős folyamat és nem mindig van szükség minden zár feloldására, bizonyos “ajtókat” pedig érdemes bezárni magunk után.

Az első lépés a root-olás. Ezzel az operációs rendszer teljes-jogú felhasználói lehetünk. Ezzel lehetőségek kapunk a rendszerünk kedvünkre való beállítását, de akár egy új operációs rendszer telepítésére a készülékünkre. Ahhoz, hogy nem gyári ROM kerüljön  a készülékre a Recovery programot is le kell cserélni, mert a gyári nem engedélyezné. A HTC és sok más készülék számára az unrevoked3 és a Clockwork Mod Recovery segítséget nyújthatnak ebben. Természetesen, senki semmilyen garanciát nem vállal arra, hogy nem lesz a készülékből építőipari egység (tégla). Clockwork Mod Recovery azonkívül még számos hasznos kis programot hoz magával, melyek segítségével a zseb számítógépünk karbantartása még biztonságosabbá és egyszerűbbé válik.

Az S-OFF vagyis a rendszer biztonsági szintek kikapcsolása. Ez az eljárás engedélyezi a “tiltott” partíciók írását illetve a partíciók újraformázását, méretezését. Ehhez fel kell patch-elni a HBOOT részét a ROM-nak. HTC esetén segédeszközként használhatjuk az  unrevoked forever programot. De előbb root jogokat kell szereznünk.

Ha már elértük a készüléken azt, hogy Bootloader gátlásmentes legyen és a Recovery is bővített funkciókkal bír, már csak egy lépés a készülék flash-elése. Ezzel az eljárással kicserélhetjük a ROM tartalmát: a boot loadert, a kernelt, de akár a rádiómodul beépített programját is. A ROM disztribúciók között vannak módosítatlanok (“stock“), vagyis Google által kiadott verziók, és készülék gyártói vagy szabadon fejlesztett, u.n. “custom” ROM-ok, melyek jelentősen eltérhetnek mint kinézetben, mint teljesítményben az eredetitől és általában valamilyen optimalizációs céllal készülnek. Mindig az a kérdés, mire van szükségünk. A legkedveltebben módosított ROM-ok a  CyanogenMod és a MIUI.

  1. Windows HBOOT driver telepítése (Linux/Unix alapú gépeken szükségtelen)

    • unrEVOked modified USB driver letöltve a számítógépre, kitömörítve
    • telefon kikapcsolva, USB kábel kihúzva
    • hangerő szabályzó “LE” gomb megnyomjuk (és tatjuk) miközben a “Bekapcs” gombot megnyomjuk
    • Recovery üzemmód betöltve (fehér háttér pár színes betűsorral)
    • USB kábel a készülékre rá, és vár, amíg a telefon nem mondja, hogy HBOOT USB PLUG
    • keressük meg az Eszköz kezelőben az Egyéb eszközök Android 1.0 fel nem ismert eszközt, jobb klikk, Driver frissítése
    • kézi driver kereséssel mutassuk meg a rendszernek, hova csomagoltuk ki a driver pár pillanattal ezelőtt
    • Android Bootloader Interface sikeresen feltelepítve
  2. Készülék ROOT-olása
    • kerüljük ki a fastboot indítást akkumulátor kivételével vagy menüből: Settings>Applications>Fastboot
  3. Készülék Flash-elése
  4. Particiós zárak feloldása (S-OFF)

Eszközök:
SMS Backup & Restore
MyBackup Pro

Ha valakit érdekelnek további részletek, egy kis ajánló:

Android File System Hierarchy

Droid Incredible Source Page

 

Elektromos mágnesség

comments Comments Off on Elektromos mágnesség
By , 2012. April 2 19:25

Az elektromos és mágneses jelenség első kutatói nyilván érezték, hogy a két jelenségcsoport között valami mélyebb összefüggés van, de nem tudták ezt bizonyítani. Észrevették, hogy a villám sújtotta hajók iránytűje pontatlan, és a XVII. század legismertebb elméleti fizikusának, Benjamin Franklinnek sikerül felmágnesezni egy tűt leydeni palack kisütése révén. De műhelyi kísérletekben az elektromos töltések nem befolyásolták a mágneseket, ugyanígy a mágnesek hatástalanok voltak az elektromos töltésre. Ezen erők kapcsolatáról 1807-be Thomas Young írásban nyilatkozott, hogy semmi okuk nincs feltételezni közvetlen kapcsolat létezését a mágneses és a villamos erők között.
Hans Christian Orsted Az elektromosság és a mágnesség közti kapcsolat felfedezésének dicsősége Hans Christian Oersted (1777. aug. 14. – 1851. már. 9.) dán fizikusé, aki, miután Volta munkájáról hallott, szintén szerkesztett egy elektromos oszlopot, és ezzel különböző kísérleteket végzett. 1820-ban egy tavaszi reggel, amikor a koppenhágai egyetem felé indult, hogy megtartsa előadását, a következő gondolata támadt: ha a statikus elektromosság semmiképpen sem befolyásolja a mágneseket, akkor talán más lesz a helyzet, ha próbát tesz a Volta-oszlop két pólusát összekötő drótban mozgó elektromossággal. Mikor megérkezett a fiatal diákokkal telt előadóterembe, az asztalra helyezte Volta-oszlopát, két végét platina dróttal kötötte össze, és egy mágnestűt helyezett el a közelében. A tű, amely különben mindig észak-déli irányba áll be, elfordult, és a drótra merőlegesen állt meg. Talán ez volt az egyetlen olyan nagy felfedezés, amely a diákok szeme láttára jött napvilágra, azonban a hallgatóságot nem nagyon érdekelte a dolog, de Oerstedet annál inkább. Előadás után a teremben maradt, és megkísérelte az általa éppen felfedezett szokatlan jelenség ellenőrzését. Elektromos mágnesség Először azt gondolta, hogy a mágnestű mozgását az elektromos áram által fűtött drótból kiinduló léghuzat is okozhatja. Hogy igazolja, hogy nem így van, papírlemezt helyezett a drót és a mágnestű közé, hogy megállítsa a légáramlást. A helyzet ugyanaz maradt. Azután 180°-kal elfordította a Volta-oszlopot, hogy a drótban az áram ellenkező irányban mozogjon. A mágnestű ekkor szintén elfordult 180°-kal – északi pólusa most abba az irányba mutatott, ahová azelőtt a déli pólus. Világossá vált előtte, hogy a mágnes és a mozgó elektromosság között valóban van kölcsönhatás. A feszültség alatt levő huzal párhuzamos mozgatásával kimutatta, hogy az iránytű nem egyszerűen vonzódik ahhoz, mint egy mágneshez, mert a tű kitérése mindvégig azonos maradt. A mágnestű elhelyezkedésének iránya attól függött, hogy az elektromos áram melyik irányban folyik a dróton keresztül illetve a huzal a tű alatt, vagy fölött van. Huzalhoz képest merőlegesen elhelyezve az iránytűket megfigyelte a ma ismert jobb kéz szabályt (Ha megfogjuk a vezetéket jobb kézzel, és a nagy ujjunk az áram irányát mutatja, akkor a többi ujjunk az mágneses erővonalak irányát adják). A felfedezésre vonatkozó valamennyi megfigyelését leírta, és közlés céljából beküldte az Annales de Chimie et de Physique francia folyóiratnak. A cikk 1820 végén jelent meg, a szerkesztőség következő megjegyzésével: “Az Annales olvasói meggyőződhettek már arról, hogy nem túl szívesen közlünk rendkívüli felfedezésekről szóló közleményeket, és ez az elv mindeddig helyesnek bizonyult. Oersted úr tanulmányát azonban és az általa elért eredményeket, bármilyen különlegesnek tűnnek is, sokkal több részlet támasztja alá annál, hogy tévedésre lehetne gyanakodni”. Az elektormágnesség, amint azt Oersted elnevezte, valósággá vált!

Andre Marie Ampére Amikor Oersted felfedezésének híre eljutott Párizsba, itt magára vonta Andre Marie Ampére (20 Jan. 1775 – 10 Jun. 1836) francia matematikus és fizikus figyelmét. Néhány héten belül kimutatta, hogy nemcsak az elektromos áram hat a mágnestűre, hanem két elektromos áram is hat egymásra. Ha két párhuzamos drótban ugyanabban az irányban folyik áram, akkor a két drót vonzza egymást, ha pedig a két áram iránya ellenkező, akkor taszítják egymást. Kimutatta továbbá, hogy ha egy rézdróttekercsen, amely függőleges tengely körül foroghat, áram folyik át, akkor az mindig északdéli irányba áll be, ugyanúgy, mint az iránytű. Azt is kimutatta, hogy két ilyen tekercs ugyanolyan módon hat egymásra, mint két rúd alakú mágnes. Így született meg az új tudományág, az elektrodinamika. Szolenoid és mágnes kölcsönhatása
E kísérletek vezették őt arra a gondolatra, hogy a természetes mágnességet a mágneses testekben folyó elektromos áram okozza. Elképzelte, hogy a mágneses anyag minden molekulájában köráram folyik, amely parányi elektromágnest képez. Ha az anyag nincs mágnesezve, akkor az egyes molekuláris elektromágnesek rendszertelenül helyezkednek el minden irányban, és az eredőjük nulla lesz. Mágnesezett testekben a molekuláris mágnesek, legalábbis részben, ugyanabba az irányba állnak be, így jön létre a mágneses vonzás vagy taszítás. Ampere eme feltételezését a modern fizika teljes mértékben megerősítette. Az atomok és molekulák mágneses tulajdonságait az atommag körül keringő és saját tengelyük körül gyorsan forgó elektronok hozzák létre. Mivel Ampere volt az első, aki az elektromos áram fogalmát mint a vezetőben mozgó elektromosságot világosan meghatározta, az elektromos áram egységét róla nevezték el (Egy amper akkora áram, amely másodpercenként egy coulombot visz át egy vezető keresztmetszetén). Ampére nem csak matematikus, fizikus volt, hanem kémikus is: az elsők egyike volt, akik megkülönböztették az atomokat és a molekulákat. 1814-ben Avogadrotól függetlenül kidolgozta azt a törvényt, mely kimondja, hogy minden azonos nyomású és térfogatú gáz ugyanannyi részecskét tartalmaz . Ezenkívül Ampére kidolgozott több kísérletezési eljárást és feltalált több mérőműszert is, az ő nevéhez fűződik a galvanométer és az elektromos távíró.

Ampere tudományos eredményei kimagaslók, de a szórakozott professzor klasszikus példája is volt. Mondják, hogy előadásai közben gyakran a táblatörlő rongyba fújta az orrát. Egy másik történet szerint egyszer Párizs utcáin járva, a járdaszélen állomásozó bérkocsi oldallapját fekete táblának nézte, és matematikai képleteket írt rá. Amikor a kocsi elindult, utána ment azután pedig vele futott, hogy befejezze a levezetést. Egyszer, amikor Bonaparte Napóleon látogatást tett a Párizsi Akadémián, Ampere nem ismerte meg őt. Napóleon mosolyogva jegyezte meg: „Látja Uram, mennyire zavaró, ha az ember nem látogatja meg gyakran a kollégáit. Én sem látom önt a Tuilleriák-ban, de tudom, hogyan vehetem rá, hogy eljöjjön és üdvözöljön engem!” Meghívta másnap ebédre a palotába. Másnap azonban az étkezőasztalnál széke üres maradt; Ampere elfelejtette a meghívást! :mrgreen:

Georg Simon Ohm Ampére-t elsősorban az elektromos áram mágneses hatása érdekelte. George Simon Ohm (1789. már. 16. – 1854. júl. 6.) német matematikus és fizikus, aki abban az időben tanító volt Kölnben, azt kívánta tudni, mi az összefüggés az elektromos áram, az áramot vezető drót anyaga, valamint az áramot mozgásban tartó elektromos potenciál között. Több Volta-oszlopot alkalmazott, amelyeket sorba kapcsolva, különböző feszültséget állított elő. Ezen kívül egy Ampere által szerkesztett galvanométert használt, amelyben az elektromos áram erősségét a mágnestűnek az áram által okozott kitérése méri. Különböző fémekből készült különböző hosszúságú és keresztmetszetű drótok vizsgálatával megállapította, hogy az áram erőssége egyenesen arányos a drót keresztmetszetével, fordítva arányos a hosszával, és függ a drót anyagától is. Megállapította azt is, hogy egy adott drótnál az áramerősség arányos a két vég közötti elektromos Ohm törvénye potenciálkülönbséggel (feszültséggel), amelyet az áramot a dróton mozgató, sorba kapcsolt Volta-oszlopok száma határoz meg. Az eset hasonló ahhoz, amikor a folyadék szabad áthatolását gátló üvegrosttal töltött csövön vizet szivattyúzunk át. A vízáram erőssége itt is a szivattyú által létrehozott nyomással és a cső keresztmetszetével nő, a cső hosszával pedig csökken, és a csőbe helyezett víz szabad áthaladását gátló anyag természetétől és mennyiségétől is függ. Ohm így bevezette a különböző drótok elektromos ellenállásának fogalmát. Felfedezéseit 1827-ben tette közzé “A galvanikus áramkör matematikai szempontból” címen. Ebben lefektette az elektromos áramkörök jövőbeni tanulmányozásának az alapjait.
Az elektromos ellenállás egységét Ohm tiszteletére 1 ohm-nak nevezzük, ez az az ellenállás, amely 1 volt potenciálkülönbségnél 1 amper áramot hoz létre. Néha elektromos ellenállás helyett elektromos vezetőképességről beszélünk, ami annak a reciproka. Az elektromos vezetőképesség egységét egy mho-nak nevezzük, ami az ohm szó fordítottja, vagy siemensnek.

Michael Faraday Michael Faraday (1791. szept. 22 – 1867. aug. 25) az elektromos és mágneses jelenségekre vonatkozó klasszikus kutatásokat betetőzte, és új korszakot tárt fel, a „modern fizika” korszakát. London közelében született, egy kovácsmester fiaként. Szegénységük miatt 13 éves korában kifutó lett Mr. Riebau könyvesboltjában, később Riebau könyvkötőinasnak szerződtette hét évre. Faraday nemcsak bekötötte a könyveket, amelyek a boltba kerültek, hanem sokat közülük elejétől végéig el is olvasott, ami szenvedélyes érdeklődést keltett benne a természettudományok iránt. Különös örömet okoztak neki a  Marcet Conversations in Chemistry című könyv és az Encyclopaedia Britannica villamossággal foglalkozó cikkei. Utolsó tanoncévében, amikor éppen húsz éves volt (és amikor Galvani és Volta felfedezései még újdonságok voltak), a következőket írta régi barátjának, Benjamin Abbottnak (1811):

“Nemrégiben néhány egyszerű galvanikus kísérletet végeztem csupán azért, hogy magam előtt is szemléltessem a tudomány alapelveit. Knightékhez mentem, hogy egy kis pénzhez jussak, és emlékeztem rá, hogy formálható horganyuk(Zn-cink) van. Vásároltam ebből egy keveset. Vajon láttál-e már horganyt? Az első adagot a létező legvékonyabb darabokban kaptam, laposra hengerelve. Ez elég vékony volt elektromos pálcának, amint mondták, vagy De Luc elektromos oszlopnak, amint én azelőtt azt neveztem. Ebből korongokat alakítottam, ezekből és vörösrézből egy kis telepet készítettem. Az első telep hét pár lemezt tartalmazott!!! Ezek mérete egyenként félpenny-es érme nagyságú volt!!!  Én, Uram, én saját magam hét darab egyenként félpenny nagyságú korongot vágtam ki. Michael Faraday elektrolízis kísérlete Hét darab félpennyessel fedtem be ezeket, és közéjük hét vagy helyesebben hat nátrium-kloridoldattal átitatott papírdarabot helyeztem el. De ne nevess, kedves Abbott, inkább figyeld, hogy mi volt a hatása ennek az egyszerű készüléknek. Elegendő volt magnézium-szulfát szétbontásához — ami a legnagyobb mértékben meglepett, mert nem volt, nem lehetett fogalmam arról, hogy ez az anyag erre használható. Egy gondolat villant fel agyamban, elmondom. Összekötöttem az oszlop tetejét, az alját és az oldatot rézdróttal. El tudod-e képzelni, hogy a réz bontotta szét a szulfátot — vagyis annak az oldatba merített részét? Biztosra veszem, hogy ez galvanikus folyamat volt, mert mindkét drótot rövid időn belül gázbuborékok fedték, és apró részecskékhez hasonló igen kicsi buborékok folytonos áramlása járta át az oldatot a negatív drótból kiindulva. Hogy a szulfát bomlott szét, azt az bizonyította, hogy a világos oldat két óra alatt zavarossá vált: magnézium volt benne szuszpendálva”.

Ez volt az elektromos áram által bekövetkező kémiai bomlás, az elektrolízis. Faraday folytatta e jelenség vizsgálatát, és az utána következő évek folyamán két róla elnevezett alaptörvényt fedezett fel. Az első Faraday-törvény kimondja, hogy: egy meghatározott oldatnál az elektródákon lecsapódó/felszabaduló anyag mennyisége arányos az oldaton áthaladt teljes elektromosság mennyiségével (vagyis az idővel szorzott áramerősséggel). Ez annyit jelent, hogy az elektromosságot az oldatban szállító töltéssel bíró molekuláknak (amelyeket később ionoknak neveztek el) szigorúan meghatározott elektromos töltésük van. A második Faraday-törvény szerint különböző anyagok egy vegyértékű ionjai egyenlő mennyiségű elektromosságot szállítanak, a két, három stb. értékű ionok pedig arányosan nagyobb töltéseket. Ez az elektromos töltés univerzális egységének a létezését bizonyítja, amiről Faraday idején csak azt tudták, hogy a különböző atomokhoz van kötve. Később azonban a téren keresztül repülő szabad elektronok alakjában is észlelték.
Davy laboratórium Faraday-nek, az elektrolízis felfedezése után, állás után kellett néznie, mert tudta, hogy állása az üzletben már csak néhány hónapig tart. Leghőbb vágya volt, hogy Sir Humphry Davynél, a neves kémikusnál dolgozhasson, akinek előadásait inaskorában is hallgatta. A Davy előadásairól készített jegyzeteit kalligrafikusan lemásolta, mesterien elkészített rajzokkal egészítette ki, elegáns kötetet készített belőlük, és elküldte neki, azzal a kéréssel, hogy munkát kapjon laboratóriumában. Sir Humphry Davy a Royal Institution of Great Britain egyik igazgatója volt, és az intézet egyik felügyelőjétől kért tanácsot a fiatal könyvkötő alkalmaztatása ügyében. Az a következőket mondta: „Mossa az edényeket! Ha értékes fiú, akkor elfogadja ezt a munkát; ha nem fogadja el, akkor semmire se való!” Faraday elfogadta, és az intézetben maradt élete további 45 éve folyamán, először mint Davy segédje, azután mint munkatársa és végül, Davy halála után, mint utódja. Számos közleménye jelent meg tudományos folyóiratokban, de a tanulmányaival kapcsolatos legfigyelemreméltóbb dokumentum a Naplója, amelyet 1820-tól 1862-ig folyamatosan vezetett. Ezt a Royal Institution nemrégiben (1932) hét vaskos kötetben adta ki, összesen 3230 oldalon, több ezer lapszéli rajzzal. Pár idézet a naplóból az elektromágneses indukció megfigyeléseiről:

1831. aug. 29.
1.  Kísérletek az elektromosságnak mágnességből való létrehozására vonatkozóan stb. stb. Michael Faraday kísérlete
2.  Lágyvas-gyűrűt készítettem gömbvasból, mely 7/8 col vastag, a külső átmérője pedig 6 col. Egyik felére sok rézdrótmenetet csavartam a meneteket madzag és kalikó választja el — három drót volt, mindegyik 24 láb hosszú, ezeket össze lehetett kötni egybe, vagy mint külön darabokat használni. Mindegyik szigetelve volt a másiktól. A gyűrűnek ezt az oldalát nevezzük A-nak. A másik oldalon, de térközzel elválasztva, két darab volt felcsavarva, együttes hosszúságuk 60 láb volt, irányuk ugyanaz, mint az előző tekercseké, ezt az oldalt nevezzük B-nek.
3  Megtöltöttem egy, 10 négycolos négyzet alakú lemezből álló telepet. A B-oldalon levő tekercsekből egy tekercset csináltam, végeit pedig összekötöttem rézdróttal, amely közvetlenül egy mágnestű fölött haladt el (3 láb távolságra a vasgyűrűtől).Azután összekötöttem az A oldali egyik tekercs végeit a teleppel; azonnali hatás mutatkozott a tűn. Rezgett, és végül az eredeti helyzetben került nyugalmi állapotba. Mikor megszakítottam az A-oldal kapcsolását a teleppel, ismét jelentkezett a tű ingadozása.

Vagyis az egyik tekercsen áthaladó elektromos áram egy, a közelben elhelyezett másik tekercsben áramot indukál, ugyanúgy, mint ahogy egy test elektromos töltése elektromos polarizációt indukál egy másik közeli testben. Míg azonban az elektromos polarizáció esetében a hatás statikus, és mindaddig tart, amíg a két test egymás közelében marad, addig az elektromos áram indukciója dinamikus folyamat. A második tekercsben csak azokban az időközökben folyik áram, amíg az első tekercs árama 0-tól normális értékig növekszik, vagy amikor ettől az értéktől ismét 0-ra csökken.
Nem egészen 3 hónappal e korszakalkotó felfedezés után további fontos eredményeket ért el Faraday az elektromosság és mágnesség összefüggésével kapcsolatos tanulmányaiban. Itt közöljük Naplóikból, hogyan történt ez:

1831. okt. 17.
56.    Üres hengert készítettem papírból 8 rézdróttekerccsel, amelyek valamennyien egy irányban haladnak, és méretük a következő: 22, 23, 25, 27, 28. 30, 31, 32 láb. A kiálló végeket bele nem értve, valamennyit fonal és kalikó választja el egymástól. A papírhenger belső átmérője 13/16 hüvelyk volt, a külső átmérő 1½ hüvelyk, a réztekercsek (hengeralak) hossza 6 ½ hüvelyk.
57.    Kísérletek 0-val. A henger egyik végén levő 8 tekercsvégződést megtisztítottam, és nyalábbá kötöttem össze. Ugyanígy a másik 8 végződést is Ezeket az összekötött végeket azután hosszú rézdrótok segítségével a galvanométerrel kötöttem össze — azután egy ¾ hüvelyk átmérőjű és 8 ½ hüvelyk hosszú henger alakú rúdmágnes egyik végét bedugtam a hengeralakú tekercs végébe — utána gyorsan egész hosszában beledugtam, amire a galvanométer tűje megmozdult, amikor kihúztam a tű ismét megmozdult az ellenkezőirányban. Ez a hatás minden alkalommal megismétlődött, ha a mágnest a hengerbe tettem, vagy onnan kivettem, és ennek következtében elektromos hullám keletkezett pusztán a mágnes közelítése miatt, nem pedig attól, hogy ott van a mágnes.
58.    A tű nem maradt meg elfordult helyzetében, minden alkalommal visszatért a helyére. A mozgások sorrendje a fordítottja volt az előző kísérletek sorrendjének — a mozgás iránya megfelelt az előző kísérleteknek, vagyis a tű igyekezett a gerjesztő mágnessel párhuzamos helyzetbe kerülni, mivel a drótnak és az azonos nevű pólusoknak ugyanazon oldalán volt, ugyanabban az irányban.
59. Ha a 8 tekercsből egy hosszú tekercset csináltam, a galvanométerre gyakorolt hatás nem volt olyan erős, mint azelőtt, valószínűleg még a fele sem. Így a legjobb, darabokban és a végén összerakva.
60. Ha a 8 tekercs közül csak egyet használtam, alig volt észlelhető hatás.

Joseph Henry Az a gondolat, hogy a mágnességnek elektromos áramot kell létrehoznia, mert az elektromos áram is hoz létre mágnességet Faraday idejében már a levegőben volt. Sok fizikus igyekezett ezt a hatást megfigyelni. De félrevezette őket az elektrosztatikus indukcióval való analógia. Csak statikusan elrendezett mágnesekkel és drótokkal, tekercsekkel próbálkoztak, Francesco Zantedeschi de a mágnes köré tekert vezeték nem gerjesztett szikrát végek összeérintésekor. Faraday zsenijének és gazdag gyakorlati tapasztalaténak köszönhető, hogy kiderült: az elektromos áram létrehozása dinamikus folyamat, amelyhez vagy a másik áram erősségének a változása, vagy a mágnes helyzetének a változása szükséges. Ugyanez a gondolat felmerült egy másik fizikusban, az amerikai Joseph Henry-ben is, aki azonban addig halogatta a közzétételt, amíg a felfedezés prioritása az Atlanti Óceán másik partján levő férfié lett. Későbbiekben azonban kiderült, hogy mindkettejüket megelőzte egy fizikusi vénával megáldott olasz pap, Francesco Zantedeschi (1797. aug. 20 – 1873. már. 29) ki publikussá tette munkáit 1929-ben.

Michael Faraday kutató szelleme nem állt meg, amikor kibogozta az elektromosság és a mágnesség rejtett összefüggését. Azt is tudni kívánta, hogy az optikai jelenségeket befolyásolják-e a mágnesek. Ez irányú fáradozásainak eredménye az a fölfedezés, hogy mágneses térbe helyezett átlátszó anyagokban a fény polarizációs síkja elfordul (Faraday-effektus – 1845. szept.13). A mágneses erővonalak mentén terjedő fény – igen rövid elektromágneses hullámokból álló –, és az egyes atomokon belüli elektromos áramok közötti belső kapcsolatot mutatja. Ezeket a parányi áramköröket, amelyek létezését Ampere tételezte fel elsőnek, ma úgy tekintjük, mint az atomi elektronok keringését a központi mag körül. Faraday meg volt győződve arról, hogy a fizikai világban megfigyelt valamennyi jelenség valamilyen módon összefügg egymással. Ezért összefüggést igyekezett találni az elektromágneses erők és a newtoni gravitációs erők között. Bár 1849-ben folytatott kutatásai nem hoztak pozitív eredményt, Faraday naplója szerint a hite megmaradt.
Bármily jelentősek voltak is Faraday kísérletei, felfedezései, elméleti elgondolásai sem maradnak el mögöttük. Igen kevéssé volt iskolázott, és a matematikából gyakorlatilag semmit sem tudott, ezért nem lehetett — mint ma mondanánk — elméleti fizikus. A helyzet azonban az, hogy fizikai jelenségek elméleti képének megalkotásánál a felsőbb matematika ismerete gyakran szükségtelen, néha még káros is. Faraday előtt az elektromos és Mágneses erőtérvonalak mágneses, valamint a gravitációs erőkről azt képzelték, hogy azok a testeket elválasztó ürés téren át hatnak. Faraday egyszerű gondolkozásmódja számára azonban úgy tűnt, hogy ennek a „távolbahatásnak” nincsen fizikai értelme. Ha azt látta, hogy egy teher egyik helyről a másikra mozdul, látni akarta a kötelet is, amely azt húzza, vagy a botot, amely azt taszítja. Beszélt valamiről, ami mint egy csomó gumicső, a két egymással szemben álló elektromos töltés vagy mágneses pólus között feszül , és azokat összehúzza. Azonos előjelű töltések vagypólusok esetében ezek a gumicsőszerű valamik másképpen haladnak, és széttaszítják egymást. A Faraday-csöveket vagy erővonalakat mágnes esetében ki lehet mutatni, ha finom vasreszeléket szórunk az üveglapra, amelyen a mágnes van. A reszelék mágneses lesz, és a csövek (erővonalak) mentén ható mágneses erők irányában helyezkedik el. Elektromos tér esetében elektromos polarizáció alkalmazásával kaphatunk hasonló eredményeket, ezt a kísérletet azonban nehezebb elvégezni. Faraday megmutatta: az elektromos és a mágneses csövek (erővonalak) okozzák a különböző elektromágneses jelenségeket. Ha dróton áram folyik át, akkor a drótot köralakban erővonalak veszik körül, amelyek a mágnestűre hatást gyakorolnak, és azt meghatározott irányba mozdítják el. Ha egy vezető drótot egy mágneshez képest mozgatunk (vagy fordítva), akkor az mágneses csövek útját keresztezi, és ennek eredményeképpen áram indukálódik benne.
Faraday ezen elképzelései bizonyos tekintetben elég naivak voltak, és nagyrészt kvalitatívak, mégis új korszakot nyitottak meg a fizika fejlődésében. A testek között nagy távolságra ható misztikus erők helyébe a testek között és körül a térben folytonosan elosztott „valami” lépett, „valami”, aminek minden egyes pontban meghatározott értéket lehet tulajdonítani. Ezzel bevezette a fizikába az elektromos, mágneses vagy gravitációs kölcsönhatásra egyaránt az „erőtér”, vagy egyszerűen a „tér” fogalmát. Az üres tér által elválasztott anyagi testek közötti erőt úgy lehetett felfogni, mint a testeket körülvevő terek közötti „közelhatások” eredményét.

James Clerk Maxwell Faraday elképzeléseinek matematikai megfogalmazását a híres skót James Clerk Maxwell (1831. jun 13 – 1879. nov. 5) adta meg. Maxwell Edinburghban született, néhány hónappal azután, hogy Faraday közzétette felfedezését az elektromágneses indukcióról. Faraday-vel ellentétben, igen jó matematikus volt. Tíz éves korában az Edinburgh Academy tanulója lett, és kénytelen volt idejének egy részét a görög rendhagyó igéknek és a „humanista tudományok” más ágainak a tanulmányozására fordítani, ő azonban inkább matematikával akart foglalkozni, és első eredménye ezen a téren, saját szavai szerint, azt volt, hogy „egy tetraédert, egy dodekaédert és még két más »édert« készítettem, amelynek nem tudtam a nevét”. Tizennégy éves korában elnyerte az Akadémia matematikai érmét egy tanulmányáért, amelyben megmutatta, hogyan lehet tűvel és fonállal tökéletes ellipszist szerkeszteni. Néhány évvel később, Maxwell két tanulmányt nyújtott be a Royal Societynek, az egyik címe „Gördülő görbék elméletéről”, a másiké „Rugalmas szilárd testek egyensúlyáról”. Mindkét tanulmányát másvalaki olvasta fel a Societyben, mert „nem volt ildomos, hogy egy blúzos kisfiú lépjen az előadói emelvényre”. Maxwell 1850-ben, 19 éves korában beiratkozott a cambridge-i égyetemre. Négy évvel később megkapta a diplomáját, 1856-ban pedig kinevezték az aberdeeni Marischal College természetfilozófiai tanszéke vezetőjének. Itt maradt 1874-ig, akkor visszahívták Cambridge-be, az akkor újonnan alapított Cavendish Laboratórium igazgatójának.

Maxwell kezdetben csak a tiszta matematika iránt érdeklődött, de hamarosan élénken érdekelni kezdte a matematikai módszerek alkalmazása különböző fizikai problémákra. Igen jelentősen hozzájárult a hő kinetikus elméletének kifejlesztéséhez, de legjelentékenyebb munkája kétségkívül az volt, hogy a matematika nyelvén fogalmazta meg Faraday elgondolásait az elektromágneses tér természetéről és törvényeiről. Általánosította azokat az empirikus tényeket, hogy a változó mágneses tér elektromotoros erőt és elektromos áramot indukál a vezetőkben, valamint hogy a változó elektromos tér és az elektromos áram mágneses teret hoz létre. Az általánosítás eredményképpen megalkotta a később róla elnevezett híres egyenleteket. Ezek a mágneses tér időbeli változását az elektromos tér térbeli eloszlásával kapcsolják össze és fordítva.
Ha a mágnesezett testek, töltött vezetők és az elektromos áramok eloszlását ismerjük, akkor Maxwell-egyenletekkel minden részletében ki tudjuk számítani az elektromágneses teret és annak időbeli változását. Maxwell kimutatta, hogy bár az elektromos és mágneses terek rendszerint elektromosan töltött és mágnesezett testekhez vannak kötve, szabad elektromágneses hullámokként is létezhetnek és terjedhetnek a térben. Hogy ezt világosan lássuk, vegyünk két gömb alakú vezetőt, amelyek közül az egyik pozitív, a másik negatív elektromossággal van töltve. A két gömböt körülvevő térben sztatikus elektromos tér van, amely a töltések elektromos energiáját valami olyan módon tárolja, mint ahogy egy erősen meghajlított rugó tárolja a mechanikai energiát. Ha a két gömböt dróttal összekötjük, akkor áram folyik egyikből a másikba. így a gömbök töltése, és ezzel az őket körülvevő elektromos tér is, gyorsan csökken, végül eltűnik. Az áram azonban mágneses teret hoz létre a drót körül. Abban a pillanatban, amikor az elektromos tér 0, a rendszer egész energiája ebben a mágneses térben van felhalmozva. A folyamat azonban nem áll meg, az elektromos áram, bár csökkenő intenzitással, de tovább folyik a drótban, és újra feltölti a két gömböt ellenkező előjelű elektromossággal. A mágneses tér energiája úijra az elektromos tér energiájává alakul. Végül megszűnik az áram, a gömbök újra fel vannak töltve ugyanannyira, mint kezdetben, de ellenkező előjellel. A folyamat aztán újra megindul, ellenkező irányban. Az elektromos rezgések folytatódnak oda-vissza, amíg a töltést hordó drót felmelegedése által okozott fokozatos energiacsökkenés meg nem állítja a rezgéseket. Az egész hasonló az ingához, ahol a mozgás kinetikus energiája, amely a lengések közepén éri el a maximumát, a két szélső helyzetbe érve, potenciális energiává alakul.
Maxwell egyenleteiből le tudta vezetni, hogy a leírt rezgő elektromágneses tér az oszcillátort körülvevő téren át energiát magával vivő hullámok alakjában szétterjed. Mivel az elektromos erővonalak a dróton átmenő síkban fekszenek, a mágneses erővonalak viszont merőlegesek rá, a hullám elektromos és mágneses vektorai merőlegesek egymásra és a terjedési irányra is. 1888-ban, röviddel azután, hogy Maxwell tanulmánya megjósolta, Heinrich Hertz német fizikus bebizonyította e hullámok létezését. Ez vezetett azután a rádiótechnika kifejlődéséhez, ami manapság az ipari civilizáció nagy részét alkotja.

Maxwell elméletének egyik igen fontos eredményét most részletesebben tárgyaljuk: az elektromágneses hullámok terjedési sebességének a kiszámítását. Ha az elektromos és mágneses terek kölcsönhatásával foglalkozunk, felmerül a kérdés, hogy milyen eszközöket használjunk a különböző elektromágneses mennyiségek mérésére. Előzőleg láttuk, hogy az elektromos töltés egységét úgy definiálták, mint amely a tőle 1 cm távolságra levő, vele egyenlő töltést 1 din erővel taszítja. Ennek megfelelően az elektromos térerősség egységét úgy kell definiálnunk, mint azt a teret, amely 1 din erővel hat egy benne levő egységnyi elektromos töltésre. Hasonlóképpen definiálták a mágneses pólus egységét és a mágneses térerősség egységét is. Mi történik azonban, ha olyan jelenségekkel foglalkozunk amelyekben elektromosság is, mágnesség is előfordul? Ilyen például az elektromos áram által létrehozott mágneses tér.

Tegyük fel, hogy áram hatását vizsgáljuk a dróttól 1 cm távolságban levő mágneses pólusra. Az elektromos áram egységét úgy definiálhatjuk, mint azt az áramot, amely egy másodperc alatt a fentebb definiált töltésegységet szállítja. Ebben az esetben azonban a hatóerő, amely az áram által létrehozott mágneses térben az 1 cm távolságban levő egységnyi pólusra hat, nem szükségszerűen 1 din. Valóban nem is annyi. Másrészt viszont az egységnyi áramot definiálhatjuk úgy is, mint olyan mágneses teret létrehozó áramot, amely 1 din erővel hat az 1 cm távolságban levő egységnyi pólusra. Ekkor azonban a dróton egységnyi áram esetén áthaladó töltés nem egyenlő a fent definiált elektrosztatikus töltésegységgel. A fizikusok nem választották az egyik lehetséges definíciót, elvetve a másikat, hanem mindkettőt használják, úgy hogy egy konstans tényezőt vezetnek be az egységek egyik rendszerből a másikba való átszámítására. — A helyzet hasonlít a hő mérésénél fennállóhoz, ahol a kalóriát is, az erget is lehet használni (4,2-107 átszámítási faktorral). Az elektromos vonzás és taszítás Coulomb-féle törvényével definiált töltésegységét (a fenti két definíció közül az elsőt) elektrosztatikus egységnek (esu) vagy frankiinnak (Fr), az Oersted-féle törvény (az elektromos áram mágneses pólusra gyakorolt hatása) segítségével definiált egységet pedig elektromágneses egységnek (emu) nevezzük. Egy elektromágneses egység egyenlő 3-1010 elektrosztatikus egységgel. Vagyis a másodpercenként 1 elektrosztatikus egységet vivő áram csupánl/3-1010 din erővel hat az 1 cm távolságra levő egységnyi pólusra. Két test viszont, amelynek mindegyike 1 elektromágneses egységnyi töltést tartalmaz, és amelyek 1 cm távolságra vannak, egymást 3-1010 din erővel taszítják.

Amikor Maxwell az egyenleteit megalkotta, az elektromos térnél elektrosztatikus egységeket kellett használnia, a mágneses térnél pedig elektromágneses egységeket. Ezért az egyik oldalon elektromos teret, a másik oldalon pedig mágneses teret tartalmazó képletekbe becsúszott a 3-1010 tényező. Amikor a tovaterjedő elektromágneses hullámok leírására alkalmazta az egyenleteket, kiderült, hogy a terjedési sebesség számértéke éppen a két egység hányadosa, vagyis 3-1010 cm/sec. És íme, ez a szám pontosan megegyezik a fény vákuumbeli sebességével, amit már Maxwell születése előtt különböző módszerekkel megmértek. Áhá— gondolta Maxwell valószínűleg —, ez azt jelenti, hogy a fényhullámok a valóságban igen rövid elektromágneses hullámok. Ez a gondolat vezetett a fizika egy igen fontos ágának, a fény elektromágneses elméletének a kifejlődéséhez. A fény és anyag egymásrahatását, beleértve a fény kibocsátását, terjedésé és elnyelését, ma úgy tekintjük, mint a térben terjedő rövid elektromágneses hullámok és a parányi elektromosan töltött részecskék, a pozitív töltésű atommag körül keringő elektronok között ható erők eredményét. A Maxwell-egyenletek felhasználásával az optika összes jelenségeit és törvényeit a legapróbb részletekig meg tudjuk magyarázni.

Látszólag össze nem függő fizikai mennyiségek közti számbeli egyezések gyakran vezettek alapvető új felfedezésekhez és széles körű általánosításokhoz a fizikában. Ilyen volt az elektrosztatikus és elektromágneses egységek arányának egyezése. Későbbiekben, a forró testek által kibocsátott fényés hőhullámokra vonatkozó konstans megegyezése azzal a konstanssal, ami az ibolyántúli sugarak által megvilágított testből kibocsátott elektronokkal kapcsolatos, igen jelentősnek bizonyult a kvantumelmélet kifejlődésében.

 

Panorama Theme by Themocracy