Sokáig próbáltam ellenállni a csábításnak, hogy legyen egy saját multirotoros járművem, azonban úgy esett, hogy a sors szele befújt egy MultiWii SE Flight Controller v2.5 vezérlőt és négy 20A SimonK firmware-el töltött motorvezérlőt. Mint minden rendes műhelyben, nálam is akadt négy darab egyforma motor. Minden adott ahhoz, hogy egy új jármű kerüljön a hangárba. Tartottunk egy rövid “meetinget”, ahogy divatos szóval említve az esti sörözést, és kiderült, hogy a társaságban másnak is furdalja az oldalát a kíváncsiság, úgy-hogy elindult a tervezés… . Mivel a társaság elég heterogén érdeklődési kört illetően, így két eltérő koncepció kezdett kikristályosodni: kell egy kis fürge jószág, mellyel lehet “szakítani”, és egy másik, mely inkább stabil, és fotózásra alkalmaznánk. Hogy ne vesszen össze a csapat, mindkettőt megépítjük, de kezdjük a nyugodtabb testvérrel.
Rendszer váza. Első váznak egy F450 klónt választottam. Nem azért mert nagyon jó, hanem inkább az előfordulási gyakorisága miatt. Első ránézésre nehéz, mint a sár, és ahogy hallottam, nagyon törékeny, azonban már a sarki fűszeresnél is lehet venni pótalkatrészt hozzá. Elsőre megteszi. Későbbiekben majd alakítjuk.
Repülésvezérlő. Mivel mi is hozott anyagból építkezünk, ezért a MultiWii SE vezérlővel ismerkedünk először. Fontosabb jellemzői:
súly: 9,3g
méret: 40×40×11,6mm
furattávolság: 35×35mm, 3,1mm furattal
• ATMega 328P MCU
• MPU6050C 6-tengelyes gyro/gyorsulásérzékelő (Motion Processing Unit)
• HMC5883L 3-tengelyes digitális magnetométer
• BMP085 digitális nyomásérzékelő
• PCA9306DP1 jelszint illesztő
Bemeneti jelek: 6 PWM jel
Kimeneti jelek: 4/6/8 PWM jel (motorvezérlés) kéttengelyes kamerastabilizátor támogatással
FTDI/UART port firmware frissítéshez, Bluetooth modulhoz vagy LCD kijelzőhöz; I2C port szenzorokhoz, GPS-hez, kijelzőhöz. A vezérlővel következő modulok érkeznek: CN -06 GPS vevő, I2C-GPS NAV Modul, Bluetooth adapter, CRIUS CO-16 OLED Display Modul.
Azonban mégis nyert a kíváncsiság és egy KK2.1.5 mini vezérlővel kezdjük az ismerkedést.
Motor és légcsavar. Erőműnek 4 darab 2208/8 BL motort szereltem a vázra (2600KV). Előző tapasztalatok alapján bőven elegendő húzóerőt termelnek 10×4,5″ esetén. Első tesztekhez azonban 6×3,8″ légcsavarokkal kezdem, hogy ne szokjon el a masina, természetesen, “frekvencia zavar” miatt ;)
KK2 vezérlő beállítása. Gyári használati útmutatóból, sajnos, nem nagyon lehet beállítani a kis okoskát, különösen ha először van szerencsénk a hasonló eszközhöz. Ezért el kezdtem kutakodni egy kicsit és találtam is egy kis videót mely utasításai alapján már egyértelműen el lehet indulni (Quadcopter build – KK2.0 initial setup – eluminerRC). Ennek értelmében a következő lépésekkel kezdjük:
Távirányíró bekapcsolása, utána vevő egység és fedélzeti elektronika
Motorvezérlők kalibrálása (áramtalanítjuk a fedélzeti elektronikát és a vevő egységet, a házkart felső végállásba helyezzük, a KK2 két szélső gombját benyomva tartva áram alá helyezzük a vevőt és a KK2 vezérlőt [beep-beep], ezután a gázkart alsó végállásba helyezzük [beep]. Ezután elengedhetjük a két benyomott gombot.)
Ezután már feltehetjük a légcsavarokat, ha lehet, kisebbet, mint amit végső konfigurációban használni szeretnénk, de az is megteszi, ha csak celluxot/ragasztó szalagot helyezünk a motor tengelyere, és megfigyeljük a motorok irányát, reakcióját eltolásra, élfordításra. A vezérelektronika további lehetőségeiről és beállításairól az azonos felépítésű korábbi vezérlő nem hivatalos felhasználói könyvében megtekinthetőek.
High P gain will result in a high frequency oscillation
High I gain will resultin a low frequency oscillation
PI gain adjustment process
•Go to the “Receiver Test” menu and use the transmitter trims to set the Roll, Pitch and Yaw values to zero.
•Switch off Self Level.
•Set the I gain to zero for Roll, Pitch and Yaw.
•Hover the multicopter and move in one axis (Roll, Pitch or Yaw) and quickly centre the TX control stick.
•Increase the P gain until the multicopter starts to oscillate when the stick is quickly centred.
•Decrease the P gain slightly to remove the oscillation.
•Repeat for all three axis (note, if you have “Link Roll Pitch” set to “Yes” in the Mode Settings menu then adjusting the PI gains and limits for Rol
l will also adjust the Pitch settings).
•Increase the Roll and Pitch I gain until it flies straight forward/sideways without pitching up or down. It should feel more “locked in”.
•Increase the Yaw I gain until Yaw feels “locked in”. You will see most impact on a tricopter. Leave as default for quadcopter.
Beállítási folyamatot és a hibákat bemutató videó.
PI limits
The PI limits are the percentage of motor power that can be used to apply the correction. These should be left at default. For example, a limit of
20 (20% motor power to apply the correction) will allow 80% of motor power to be used for commanding a change in direction from the receiver.
Servo test: Th. 0 – 90-100; AER ±90-100, direction
Stick Scaling
These settings enable you to adjust the sensitivity of the transmitter stick. A higher number gives a more sensitive response. It is used in preference to increasing the rates in your transmitter. The default values are low for beginners that may not a ppreciate how sensitive the transmitter sticks can be in controlling a multicopter.
•If you want to flip and roll, you will need to increase the Roll and Pitch values.
•Increase the Yaw value to yaw to your liking.
•Throttle is best left at 90. If you increase it too much, full throttle on the transmitter will run the motors at maximum and leave no headroom for the PI control loop to adjust the motors to keep it steady.
Misc. Settings 1
Various settings
•
Minimum throttle – ensures all motors start at the
same rate. If some motors do not start
when you arm, increase this value. This value also
allows you to change the motor speed if
you have Spin on Arm enabled.
•
Height Dampening – Compensates for the drop in heig
ht when the multicopter is banked in
a turn. Normally, the pilot will compensate for thi
s dropping effect by increasing the throttle
slightly. The default is 0 (disabled).
•
Height D. Limit – The percentage of motor power tha
t can be used to apply the correction.
•
Alarm 1/10 volts – When the flight battery +ve term
inal is connected to the KK2.1.X battery
monitor pin, this sets the voltage alarm threshold
when the buzzer sounds. If you want the
buzzer to sound at 10.2 volts or less, set this val
ue to 102. The default is 0 (disabled).
•
Servo Filter – Software filter that smooths out the
control signal to servos. Set this value as
low as possible.
•
Acc SW filter – Software filter in the KK2.1.X code
that smooths out the accelerometer
reading. This value can be increased to mask vibra
tions. The default is 8 which results in a
low pass filter coefficient of 0.03 (8/256). It is
Elkészült a vitorlázó, az egyméteres elektromos gépeket már untam, így elkezdtem keresni azt a gépet, amelyik mutatós, lehet vontatásra használni és nem túl bonyolult egy kevésbé ügyes modellezőnek sem. Végül egy igazi sikertörténettel rendelkező gépnél, az U-2 ragadtam le, amelyet az 1926-28-as években fejlesztettek a híres orosz tervező, Nyikolaj Nyikolajevics Polikarpov felügyelete alatt az Avro 504 (U-1) oktató repülőgép kiváltása céljából, és később, 1945-ben a Po-2 nevet kapta tervezője tiszteletére. Minden repülőgép-tervező úgy tervezi meg a gépét, hogy az a legjobban teljesítse repülési feladatait. Minél jobbat alkot a tervező, annál tovább gyártják a típust. Mivel a repüléstechnika gyorsan fejlődik, ezért egy 10 évet megélt típus már jónak számít. A PO-2 35 évével a legjobbak közé tartozik.
A típus első példánya 1928. január 7-én repült először és 1929-1953 között több mint 40 000 példány került le a “szalagról”. Ezzel a biplánok között az első, összetettben pedig a második, csak a Cessna 172 Skyhawk előzte meg több mint 43 000 legyártott példányszámával. Emellett 1959-ig Lengyelországban is gyártották CSS-13 néven, licenc alapján. Eredetileg kiképzőgépnek tervezték, de kiváló repülőtulajdonságai és az M-11 100LE motor kiterjesztették felhasználási területét, így készültek belőle utas- és sebesültszállító, felderítő, futár, mezőgazdasági, hidroplán, limuzin és egyéb változatok. A NATO taxonómiájában “Mule” név alatt került besorolásba.
A második világháború kezdetén ezeket a gépeket 7,62mm golyószóróval szerelték fel, és 50-120 kg bombát is képesek voltak magukkal vinni. 1943-ra a típus terhelhetőségét 500 kilogrammra növelték. Gyakran használták éjjeli bombázásra, egy éjszaka alatt akár 5-7 bevetést is végeztek velük. A “Нaltsnähmaschine” (varrógépek) sok fejfájást okoztak ellenségeiknek. Gyakran az ”éjszakai boszorkányok”, – a “varrógépek” női pilótái – repültek, és kisméretű bombákkal, gránátokkal zavarták meg az alattuk állomásozó ellenséges táborok békéjét (3 év alatt több, mint 24 000 bevetés). A kis magasságból végzett bombázások során a primitív célzó berendezés ellenére tetemes károkat tudtak okozni. Ezek voltak az első bombázó rajok. A tényleges pusztításnál azonban jelentősebb volt pszichikai hatásuk, ugyanis gyors, nesztelen éjjeli támadásaikkal (kikapcsolt motorral vitorláztak be a célterületre) lehetetlenné tették a német földi csapatok éjszakai pihenését.
A sztálingrádi csatában a németek rejtett kereső fényszórókat és Flak 37 légvédelmi ütegeket kezdtek használni a potenciális célpontok körül. Ehhez alkalmazkodva az oroszok hármasával kezdtek repülni. Míg az első kettő magára vonta a fényszórók figyelmét, addig a kissé lemaradt harmadik átrepült a sötét folton. Nadya Popova szerint működött a csel. :) Meggyűlt a bajuk a Messerschmitt pilótáknak is ezekkel a kis magasságon, kis sebességgel repülő, fordulékony, növényzetben bujkáló gépekkel (a Me-109 átesési sebessége 190km/h, ami a Po-2 maximális sebességénél magasabb). Vaskereszt kitüntetéssel illették azon pilótákat, akiknek sikerült lelőni egy Po-2 gépet. Előnyükként említendő még, hogy láthatatlanok voltak a német radarok és motorjuk kis teljesítménye miatt az infravörös érzékelők számára is.
Magyarországon 1946-tól volt használatban ez a típus, előbb mint légi-taxi, később mint katonai futár és gyakorlógép. Az ötvenes évek közepétől már a sportrepülésben szolgált vitorlázó vontató és ejtőernyős ugrató gépként. Ezeknek a gépeknek a zöme lengyel gyártmányú volt. 1968-ig voltak használatban ezek a remek gépek, bár, a korszerűbb típusok kiszorították őket feladatkörükből, még ma is több repülőképes példány létezik a Po-2-ből a nagyvilágban. Nem kis büszkeséggel a hazai Goldtimer Alapítvány is birtokol és üzemeltet egyet (HA-PAO), a Budaörsi reptéren.
Mi biztosította, tehát, a típus olyan hosszú pályafutását? Első sorban a szerkezet egyszerűsége, és ebből adódóan alacsony előállítási, karbantartási és üzemeltetési költsége. A rövid kifutási és leszállási út miatt a katonaság is szívesen használta, ugyanis felszálláshoz elegendő volt egy focipályánál alig hosszabb füves rét. És végül, de nem utolsó sorban, kiváló stabilitása és irányíthatósága minden repülési módban tették közkedveltté mind a polgári, mind a katonai pilóták körében. Mivel a gép elnézte a kezdőpilóták durva hibáit is, ezért a második világháborús pilóták szinte kivétel nélkül a PO-2 típusú gépeken kapták az alapkiképzést.
Szerkezete mai szemmel nézve egyszerűbb már nem is lehetne: az U-2 törzsét fenyőlécből és furnérból építették vászonnal bevonva.
Szárnyfelei 16 darab TsAGI-541 (8.1%) profilú [ЦАГИ-541, ОСС-ЦКБ №2] bordából készültek két hossztartóval. A szerkezet belső feszítését 4-5mm vastag acélhuzalokkal oldották meg. A szárny kilépőélét alumínium csíkkal fedték, mely összekapcsolta és védte a bordák legsérülékenyebb részét. A csűrők közvetlenül a hátsó hossztartóhoz lettek rögzítve három lágy acélból készült zsanérral. Végül, az egész szerkezetet vászonnal borították és feszítő lakkal impregnálták. A szárnydobozt eleinte acélcsövekből készítették, áramvonalas faburkolattal kiegészítve. Későbbiekben, ezeket csepp keresztmetszetű dural csövekkel helyettesítették.
A törzs farokrészének keretét fenyőlécekből és feszítőhuzalokból alakították ki levehető furnér fedéllel a könnyebb átvizsgálás céljából. Ezen a részen kapott helyet a “csomagtér” is. A motortartó konzolt a korai években 4mm duralból és acélcsövekből készült, 1931-től pedig hegesztett acélcsőszerkezettel váltották ki.
Ennyi szép kép után egy modellező nem tudja megállni, hogy ne építsen egyet.
Átnézve az eredeti U-2 műszaki leírását és kézhez véve egy 1973-ban Franz Meier-által tervezett 1:6 arányú modell tervrajzát (RCM Plan #530) elkezdtem szerkeszteni a saját 1:5 arányú 3D modellemet, mely későbbiekben CNC vágott alkatrészek gyártását is elősegíti későbbiekben. Pár órányi oktató videó átnézése után telepítésre került az AutoCAD próbaverziója. Az első 12 óra lényegében csak az eszközökkel való ismerkedéssel telt. Próbálgattam összehozni a körvonalakat, helyükre tenni a tengelyeket, illetve elkezdtem megrajzolni az egyes alkatrészeket. Harmadik nekifutás után már én is tudtam, mit akarok. Az igazat megvallva, a modell méretét egy 1946-ban gyártott babakocsi kerekének a nyomtávja adta meg, mert sehol máshol nem sikerült sehol máshol találni a ferde ízlésemnek megfelelő kereket, – azaz egy igazi “gombhoz kabátot” projekt kezdődött el.
Tervező munka. Miután sikeresen megszerkesztettem a már meglevő alkatrészeket (kerék, tengely, pár alátét, abroncs :)), elejét vette a lassú, de annál tanulságosabb munka a megfelelő anyagok és technikák felkutatása és kiválasztása terén. Egy darabig “pálcikás” gépet akartam építeni, de közelebbről megismerkedve egy-két előregyártott készlettel, paradigmaváltást szenvedett a tudatom és 3mm rétegelt nyírfalemezre tettem a voksomat. Alapvető igényem az új dolgok megismerésére az anyagválasztás terén is megmutatkozott. Az eredeti balsafa–fenyő helyett (a fenyő ragasztás a gyanta miatt amúgy is gyengül évek múltán), az anyagok szélesebb spektrumát kívántam használni, – ezt részben az erőteljesebb benzinmotor is indokolta. Végül a gép zöme 3mm rétegelt lemezből készül, egyes ívek megerősítése juharfával történik, a kritikus elemek pedig 50g üveg- és szén-szövetet kapnak.
3D modell. Az AutoCAD hasznos társnak bizonyult. Téli utazásaim során egymás után szerkesztettem az alkatrészeket, néha újra és újra: előbb a motortartó, a pilótafülke, a törzs hátsó része, a farokrész, a felfüggesztés, a szárny, a centroplán. Mire a gép alkatrészeinek nagy része a helyükre került, már virágzott a cseresznye. De utólag belegondolva, korszerű számítástechnika nélkül messzemenően nem tartanék itt, és ami nagyon fontos – anyagpazarlást sem végeztem!
Előkészületek. Megmutattam a rajzot ismerős modellezőknek, jöttek jó ötletek, és kevésbé jók, egyes modulok cserére vagy átalakításra kerültek. Kezd igazi terv kinézete lenni! Következő lépés: az anyagok beszerzése és megmunkálásuk gyakorlása. Elkezdtem kísérletezni bronzzal, alumíniummal, üvegszövettel, epoxigyantákkal, adalék anyagokkal, készítettem laminátokat (lemezt, csövet), beüzemeltem a vákuumos laminálót, történt pár törésteszt, – lényegében behatároltam objektíven a képességeimet, és amit még nem tudtam egyedül megoldani, annak utánajártam, ki tud segíteni a probléma megoldásában.
Alkatrészgyártás. Ahogy fejben összeállt, hogy mely alkatrész hogyan készül, leadtam a rendelést a főbb alkatrészek CNC vágására, csoportosítottam az anyagokat és előkészítettem a munkaterepet az “alkotáshoz”. Elsőként a széncső gyártásnak estem neki. Már nagyon érdekelt, hogy mennyi anyagot kell majd elpazarolnom, mire valami használhatót kapok. Meglepetésemre harmadik próbálkozásra már igényeimnek megfelelő minőséget tudtam elérni. Íme a recept, hogyan csináltam én. SZÉNCSŐ: az új gépezethez egy 7mm belső átmérőjű csőre van szükségem 22cm hosszúsággal és max. 1mm falvastagsággal. Öreg de nem vén modellező barátom mondta, hogy az egy milliméter kicsit túlzás, így maradtam a 2-3 réteg uni-direkciós (UD-szén) szövet és 1-2 réteg 25g üvegszövet konstrukciós tervnél. Első lépésként találnom kellett egy csövet, melynek átmérője hajszálnyit kisebb, mint 7mm. Az én esetemben ez egy 25 cm hosszú alumínium rúd lett. Alaposan lecsiszoltam, felpolíroztam. Ahhoz, hogy a laminát ne tapadjon hozzá a fémhez, próbálkoztam először csak formaleválasztóval,
de próbálkozásaimat nem koronázta siker, így végül bevetettem a nehéztüzérséget, – elhoztam a konyhából a sütőpapírt :). Kis fedéssel feltekertem az alumínium rúdra és átfedés mentén ragasztatom önmagához. Száradás után ellenőriztem, hogy a papírcső szabadon mozog-e a rúdon. Ezután a papírt formaleválasztóval bekentem (amúgy jó a Pronto és más viasztartalmú bútorápoló is). Száradás után megint meggyőződünk arról, hogy a papírcső szabadon mozog, nincs aláfolyás. És ha a “minőség-ellenőrzés” sikeresen zárult, lehet keverni a gyantát és szabni a szöveteket: πD+20%×25 cm üvegszövet, és ugyanolyan hosszú, de
πD széles UD-szén egymásra fektetve át lett itatva lamináló gyantával, fölösleg felitatva régi textil anyagával. Mehet rá hengeresen a rúdra és utána módszeresen el kell egyengetni, kiszorítani a fölösleges gyantát/levegőt (a munkát kesztyűben illik végezni az alkotó elemek mérgező mivolta miatt). Ezután 50-75%-al hosszabb csíkot vágunk mindkét anyagból, lehet keskenyebb, átitatjuk gyantával és spirálisan tekerjük fel a rúdra, úgy, hogy a külső réteg üvegszövet legyen. Amint alaposan eligazítottuk a szövetet, jöhet a formaleválasztóval bekent, kiszárított
celofán csík, szintén spirálisan feltekerve. Ügyeljünk a celofánréteg feszességére. Részben ez fogja meghatározni a felületünk egyenletességét. Ezután a “kreálmányunkat” betesszük egy 12mm zugsorcsőbe, és közepétől indítva, hőlégfúvóval zsugorítjuk, folyamatos forgatás mellett. A hő hatására a gyanta viszkozitása csökken, kicsit tágul, a cső pedig kiszorítja a fölösleget és az esetleges buborékokat. Én ezután görgőzni szoktam a zsugorcsövezett laminátot egy kemény fafelületen egy kisebb deszkalappal, továbbegyenlítve az anyagok eloszlását a cső alatt. Ezután jön egy 24 órás pihenő és/vagy 60-70°C kemencében való sütögetés. Ezzel a módszerrel tized-milliméteres falvastagságot kaptam. A törésteszt során a cső torzulása 80 kg terhelésnél követezett be, de nem roppant szét, inkább úgy viselkedett, mint a papírcső: helyenként kifehéredett, és lassan elkezdett kilapulni. FÉMALKATRÉSZEK. Mivel a fémmegmunkálás nem erős oldalam, kicsit utána kellett járnom a témát. Próbálkoztam acéllal, alumíniummal, de végül a bronznál álltam meg. Könnyen forrasztható, viszonylag könnyen megmunkálható, emellett kellő merevséggel rendelkezik; azonban a gép elég nagy, így a megfelelőséget a tesztrepülések, pontosabban, a tesztleszállások igazolják majd.
Az alkatrészek tervezését AutoCAD-dal végeztem és lemezekre való bontásuk után a körvonalak tükörképét rávittem a bronzlemezekre (műnyomó papír, lézernyomtató, levasalás, vágás/faragás/hajlítás). A megformázott lemezek csiszolásnak, polírozásnak és zsírmentesítésnek lettek alávetve, mielőtt kémiai ónozást kaptak. Ez elősegíti a lemezek forrasztását és megvédi őket az oxidációtól. Bár igen “pepecselős” a művelet, szerintem megérte.
FAELEMEK. Miközben ismerkedtem az új anyagokkal, elkészültek a lézerrel vágott rétegelt lemez alkatrészek. Természetesen, ahogy hazahoztam, átvizsgáltam az elemeket, és nekiálltam “legózni”. Kellemes élmény keríti hatalmába az embert, amikor 3D-ben manifesztálódik a képzelete szülöttje. :) Gyerekkoromban is jobban szerettem fakockával játszani, csak most én tervezem meg a “kockákat” is :)
Gépmadár építése.
Talán most jönnek a legizgalmasabb pillanatok. Mindenre fény derül. Előjönnek az “úh, ezt elfelejtettem”, meg az “akkor ezt hogyan is gondoltam…”, és az “ah, ez így nem lesz jó”. Azonban nincs visszaút! A TÖRZS építését a bordák felragasztásával kezdtem. Ebben a modellben az a jó, hogy van egy egyenes felülete, mely az egész törzset metszi, így referenciának használható. Ezért a bordákra nem kellettek távtartók és így kicsit spórolhattam időben, anyagban. A tűzfal körüli elemeket szén- illetve üveg-szövettel erősítettem. Ott sohasem árt egy kis extra erő. Későbbiekben a hossz-menti merevítők is megkapták a szénnel való erősítést. Nem jár annyi súlytöbbletel, mint amennyire megerősíti az elemet (juhar). A kisebb elemek is a helyükre kerültek. Lassan már kezd kirajzolódni a repülőtörzs formája a fúrótorony alatt. A futómű és a szárnyak rögzítése körül a törzs szintén meg lett erősítve szénszövettel laminált juharfával.
Az utolsó megmozdulások során a pilótafülke torziós burkolására és a géporr megformázására került sor. Eddig meg vagyok elégedve a munkámmal. A törzs súlya 800g alatt.
Ezután következett a számomra sok fejtörést okozó rész: A FELFÜGGESZTÉS. A tervezésnél, ahogy már említettem, egy antik babakocsi kereke adta meg a gép méretét, a kivitelezést azonban hátsó futóművel kezdtem. Ennek is egy, a “jó lesz még valamire” fiókban heverő alu-karbon nyílvessző adta meg az alapját. Annak a nyílhegyet befogadó menetes része az egész szerkezet rögzítésének problémáját alapvetően megoldotta, így csak pár apróság legyártása vált szükségessé. Hogy a dolgok jobban csússzanak, két darab fülezett perselyt készíttettem teflonból.
Az fő futómű elkészítése kissé kacifántosabb volt, ugyanis a tengelyt tartó persely fülei merőlegesek voltak egymáshoz, és megfelelő szögekbe kellett őket hajlítgatni, amit az ívelt formák akadályozták. Ezért munkálataim során eltérő technikákkal próbálkoztam. Az első egy 3D nyomtatott alkatrész volt, amelyet egy fizetett műhelyben sikerült kinyomtatnom. Tapasztalatnak jó volt, de szerkezeti elemnek haszontalan az így elkészült alkatrész, ugyanis a gyártási technológiából kifolyólag nem homogén az anyaga, porózus/levegős a szerkezete, ezért könnyen szétesik rétegekre. Ekkor jött a nagy ötlet: le kell gyártani a negatív formát és abba tölteni kétkomponensű gyantát üveg- és szén-szállal. Ha nem tolom el a kivitelezést, talán jó is lett volna, de végül úgy döntöttem, hogy a forrasztott fémnél maradok, mert nem tudtam kellően lecsökkenteni a gyantatartalmat a laminátban. Forrasztáshoz végül lágyacél és bronz lemezeket használtam. Ezen anyagok korábban is bizonyították használhatóságukat.
Időnként, mikor egy modellező szétnéz a műhelyében, vagy a műhelynek nevezett íróasztalon a hálószoba sarkában, ahol a felesége szemében egy hatalmas bigyó-, mütyür- és hulladékhegy tornyosul, beindulnak a szürkeállomány fogaskerekei, felvillanak képek és a gyönyörű kék égbolt előtt már látja is repülni a szerkezetet, amely más számára még felismerhetetlen alkotóelemekként hever szanaszét.
A legújabb repülőgép története egy éve kezdődött. Egy kedves kolléga megajándékozott egy 1,2 méteres üvegszál-hab kompozit szárnnyal. Sokáig állt a sarokban, amíg egy délután összeválogattam egy doboznyi maradék alkatrészt és némi faanyagot és hozzáláttam a tervezéshez. Fő célom a minél egyszerűbb, szabadon konfigurálható szerkezet volt, aminek feladata elsősorban egy kamera, és a hozzá kapcsolódó FPV adó repítése. Mivel szerettem volna többféle konfigurációban használni – kamerával, kamera nélkül, lassan, gyorsan stb – A szárny rögzítését mobilra terveztem. Így plusz súlyozás nélkül könnyedén beállítható az adott “rakománynak” megfelelő súlypont. Ugyanezt az elvet szerettem volna követni a vízszintes stabilizátornál is, így ezt teljes egészében mozgathatóra álmodtam meg, hogy a tetszőleges állásszöget (és trimmet) különösebb hozzáadott ellenállás nélkül be lehessen állítani. Mivel a szárny karakterisztikáját nem ismertem pontosan és a gép próbajelleggel épült “cicomázással”, burkolattal egyelőre nem foglalkoztam. Elsődleges cél a funkcionalitás volt.
Mivel a szárnyon nem voltak csűrőlapok ezeket balsa-depron rétegelt megoldással készítettem, ami így végtelenül egyszerű, konnyű, és merev.
A törzs egy 3 méteres spiccbot első tagjából készült. Régebben vettem egy CO2 motoros géphez, mert olcsó alternatíva volt a modellboltokban kapható üvegszálas, illetve széncsövekhez képest. Ott a középső tagot használtam. Mivel a most felhasznált elem már festett, a gépet a bot után neveztem el Viking 300-nak:)
A bot vastagabbik vége egy menetes kupakban végződik. A menetbe kör
keresztmetszetét négy részre osztva befűrészeltem úgy, hogy egy motortartó keresztet a kupak alá tudjak rögzíteni. A motor aljára egy külön kereszt került, így a motor állásszögét szintén tetszőlegesen tudom állítani, mert a két keresztet összetartó négy csavart szabadon lehet megfeszíteni. A gépet egy 2836-os 1200KV motor húzza, 9*6-os behajló légcsavarral.
A szárnyat két ponton rögzítettem. Barkácsáruházban találtam méretben megfelelő kábelcsatorna rögzítőt, amikkel könnyen megoldható volt a szárny változtatható beépítése. A két rögzítési pont közé készítettem el a farokszervók tartó konzolát, üveggel laminált rétegelt lemezből.
A stabilizátorokat egy egy 3mm-es balsalapból kikönnyítve készítettem és fóliaborítást kaptak. Egyszerű, nagyszerű és bizonyos határokon belül törhetetlen. A vízszintes formáját egy Mark Drela tervről kölcsönöztem a rögzítéséhez pedig vitorlázóktól lestem el az alapötletet és kicsit módosítva készítettem el. Egy, a lapon átmenő konzol kissé kiemeli a vezérsíkot a törzs vonalából és az egész szerkezetet a törzs csövében megfeszített rugó és a szervóhuzal tartja a helyén egy nútban olyan módon, hogy a stabilizátort lehajtott irányba húzza, a szervó pedig a rugó ellenében dolgozik. A rugós rögzítést két okból választottam. Egyrészt a próba kedvéért, másrészt, hogy a
vékonykára tervezett könnyű szerkezet szabadon kibillenhessen, ha leszálláskor egy fűcsomó, vakondtúrás stb az útját állná. Mivel a gépet videózásra szeretném használni mindenféle szép hely környékén biztos vagyok benne, hogy nem fogom mindig a legideálisabb “kifutót” megtalálni.
Mint már említettem egyelőre nem volt célom, hogy különösebben szép repülőgépet építsek, bár nekem egy funkcionálisan jó szerkezetnek is megvan a maga szépsége. Az összes elemet, aminek nem szükséges állandó felfogatás oldható kötegelőkkel rögzítettem.
A műhelyben töltött órák után pedig elérkezett a próba napja. Kézből indítva simán siklik, a motor és légcsavar kombináció félgázon is szépen emeli. Középre állított vezérsíkokkal alig kellett trimmelni, a szárny körülbelül 2-2.5 fokos szögben áll. A készítőjét idézve a szárny “AS ahogysikerül” profillal készült és remekül teljesít. Lassan, gyorsan, motorral, motor nélkül.