Category: Modellezés

Szervók működése

By , 2012. December 8 19:26

Szervók

Felépítésében viszonylag egyszerű szerkezet, mely egy nyáklapból, rajta vezérlő elektronikával, egy egyenáramú motorból, fogaskerekekből áll, melyek egy csinos kis dobozba vannak zárva. Az erőátviteli lánc utolsó fogaskerekének a tengelye ki van vezetve a dobozból. Erre kerül majd csatlakoztatásra a szervókar és arra a tolórudak. Ugyanennek a fogaskeréknek az alsó része pedig egy potméterhez van erősítve, hogy visszajelzést tudjon adni a vezérlő elektronikának (egy korábbi jegyzet: Motor- és hajtásvezérlés alapelve). A fogaskerekek anyagukban eltérnek tervezett terhelések függvényeben. Leggyakrabban poliamid vagy egyéb műanyag-fogaskerekű szervókkal találkozunk, de készülhetnek fémből, karbonból és az extrém terheléseknek kitett szervók akár titánból is. Nagyobb terhelésre szánt szervók utolsó fogaskerekét egy vagy két csapággyal is alá szokták támasztani.

Szervó felépítése

Táplálás illetve parancstovábbítás céljából 3 vezeték van kivezetve a szervóból: test, táp és bemeneti jel. Sajnos a vezetékek színezése, sorrendje és csatlakozója gyártóként változhat. Modellezésben alkalmazott szervók táplálása általában 4,8-7,2V feszültséggel folyik. Fontos megjegyezni, hogy minél magasabb a feszültség, annál nagyobb nyomatékot fejt ki a szervó, de ezzel csökken az élettartalma is – érdemes a gyártó által ajánlott értékeken belül üzemeltetni. A harmadik vezeték jeltovábbítás céljából lett kivezetve és általában 5V feszültségű PWM jelekkel közöljük a szervóval, mekkora szögben térítse ki az a kart.

Pulse Width Modulation – impulzusszélesség vezérlés

Szervó PPMImpulzusszélesség vezérlés magáról beszél: az információtovábbítást egy jel szélességének változtatásával érjük el. A modellezésben használt szervomotorok vezérlése 50 herzes, vagyis 20ms hosszúságú keretben zárt jelekkel vezéreljük. A keretben levő 1500 μs (1,5ms) hosszúságú jel középállásba kényszeríti a szervó karját. A gyártók eltérő mozgásterű szervókat gyártanak. Leggyakrabban használtak -60 és 60° között mozognak, és általában 1000-2000 μs jelszélességet igényelnek. Vannak nagyobb mozgásterű szervók is, így például futóműmozgató szervók általában 180° azaz ±90°-ra képesek elfordulni a középállástól számítva. Ezeknél vagy a visszajelzést biztosító potmétert, vagy az alkalmazható jelszélesség tartományát szélesítik, így a vezérjel 650 és 2350 μs hosszú lehet. Robotikában előfordulnak 360°-os vagy korlátozás nélküli szervók is, melyeknél a pozíciómegha-tározására enkodert használnak.

Az analóg módon működő szervók számára nem elegendő egyszer kiadni az impulzust, mert lehet, hogy a szervókar még nem éri el a végső pozícióját. Azonkívül a jel nélkül a feszültségátalakító nem táplálja a motort, így nem keletkezik nyomaték a karon, “ernyed” a szervó. Digitális szervók esetében egy jel kiküldése elegendő, mert a beépített mikrokontroll gondoskodik a végső pozíció eléréséről, utána, jel hiányában azonban a digitális szervó is “ernyed”. A digitális szervót ezenkívül eltérő válaszreakcióra is programozhatjuk, amivel optimalizálhatjuk bizonyos feladatokhoz. Vezérfrekvencia terén a szervók elég rugalmasak. Analóg verziók 30-60 Hz-en, digitális példányokat pedig akár 300 Hz-en is vezérelhetjük. Ha kissé terheljük egy analóg szervó karját, halhatjuk a “cicergést”, mely a jelmentes és aktív szakok váltakozásából adódik.

A szervók elektronikája úgy van kialakítva, hogy meg tudja határozni, a vezérjelnek megfelelő pozícióban tartózkodik-e a kar, és ha nem, akkor melyik irányba kell elmozdulnia. A PWM jel feldolgozása során a feszültségkonvertáló egység a jel alapján egy adott feszültséget állít elő. A szervóra jellemző maximális jel esetén a generált feszültség eléri a tápfeszültség értékét – ez a referencia feszültség. A szervókar tengelyére kötött potméter a kar elfordulása során nulla és tápfeszültség közötti értéket add vissza és ezáltal a egy belső monostabil oszcillátor impulzusszélességét szabályozza. Ha a bemenő jel pozitív (és általában azt alkalmazzák), akkor a monostabil jele negatív. A két jel egy komparator fokozatba kerül és a szélesebb jel különbsége kerül a kimenetre, tehát lehet + vagy – jel a komparator kimeneten meghatározva a végfok hídjának a vezérlését, tehát a motor forgási irányát. Mihelyt a két jel szélessége azonos, a komparatoron megszűnik a jel és a motor nem kap feszültséget. ServoTester

Ha valaki szeretne egy kis tesztert készíteni a szervóihoz, baloldalt megtalálható egy multivibrátor alapú séma. Három ellenállás szabadon cserélhető benne, és ezáltal a kimeneti jel változik. R3 – ellenállás megadja a keret méretét, 470KΩ ellenállás 35Hz oszcillálást okoz. Az R1 és R2 ellenállások megadják a minimális és a maximális pozitív jel hosszúságát. Ajánlott értékek: R1=6,9KΩ (650 μs), R2=33KΩ (2500 μs). Egy 100KΩ potméter segítségével tudjuk változtatni a pozitív jel szélességét az R1 és R2 által behatárolt tartományon belül. Szervó csatlakoztatásánál ügyeljünk a polaritásra, mert az áramkör nem védett! Szerencsére a modern szervók többségénél a pozitív tápkábel a csatlakozó közepén található így téve a csatlakozást biztonságosabba. Futaba J-típusú csatlakozókon Szervó csatlakozók kis tüske található, mely szintén megakadályozza a helytelen csatlakoztatást. Általánosságban elmondható az alkalmazott színekről, hogy a FEKETE és a BARNA a test vagy a föld, kinek hogy tetszik jobban, a PIROS a pozitív tápcsatlakozó, a KÉK, FEHÉR, SÁRGA pedig a vezérjel.

RC távirányítás eszközei

By , 2012. December 6 22:52

Technika fejlődésével együtt változik a repülő modellek világa is. Míg eleinte motor nélküli, később motorral ellátott szabadon repülő modellek szálltak a levegőben, későbbiekben zsinórral, huzallal irányították a modell magassági kormányát. Rá pár évvel később megjelentek az elektronikus analóg rádiók. És ahogy elérhető lett a digitális technika, az is kezdett beszivárogni a modellezés világában, utat nyitva a ma oly népszerű proporcinális rádió távirányítóknak. Lényegében, ha megnézzük a FAI modellkategóriákat, azonnal megtaláljuk ezen fejlődésnek a nyomát: F1 – szabadon-repülő, F2 – körrepülő, F3 – távirányítású modellek. Amilyen tempóval fejlődnek egyes modellezési ágak, nem tartom kizártnak, hogy hamarosan a FAI rendszerében megjelenne az UAV, az FPV és ki tudja még milyen automata és félautomata modell versenykategóriák.

Rádiótávirányítás történetéből

Teszla RC hajója Nem kell olyan messzire mennünk a múltba, hogy a távirányítás első gondolatát felkutassuk. Maga a gondolat és a megvalósítása nagyjából egyidős a telegráf hírtovábbító rendszerrel és a morze kód feltalálásával (1835). Gyakorlatban Nikola Tesla mutatta be elsőként nagy közönségnek az első távirányítású hajót New-York-i Madison Square Garden sportcsarnokban 1898-ban. Távirányítás körüli munkásságát Philadelphiai Franklin Intézetben tartott előadásával kezdődött 1893 tavaszán. Tesla ekkor foglalta össze a rádiótávközlés alapjait. 1895-ben St. Louis-ban megtartotta az első nyilvános bemutatóját távközlésből és 1896-ban már 48 km távolság sem jelentet akadályt. Azonban több évre volt szüksége a megfelelő alkotóelemek finomításához, melyek kellő stabilitást és távolságot tudtak biztosítani egy időben. Az első “RC merülő hajó” ki-be kapcsolható hajócsavar-motorral, oldal- és merülési kormánnyal volt szerelve. Mai szemmel szerény de akkori felszereltséggel igen nehezen kivitelezhető volt. Első  progamelektronika Erre a célra Tesla feltalált egy újfajta kohérer (a rádió-aktivált kapcsoló), lényegében egy tartály fém-oxid porral. A por elektromágneses mező jelenlétében úgy orientálódott, hogy megnőtt a vezetőképessége. Ha a tartályt átfordult, a por visszanyerte véletlenszerű, nemvezető állapotát. Tesla megoldotta azt is, hogy bizonyos dolgok egyszerre következzenek be egy “programozott” fogaskerekek, karok és motorok rendszere segítségével. Így a kohérer átfordulása után egy következő együttállást lehetett előhívni. Mark Twain, korán felismerte a találmány negatív oldalát is, hogy hamarosan a távirányítást harcaszati céllal is elkezdik használni. Már az 1930 években a szovjet oldalon megjelentek a “teletankok”, Angliában pedig a “Queen Bee” és a “Queen Wasp” rádió távirányítású repülők.

Első rádió-távirányítású modellek

Első RC modellekkel valamikor 1950. évek elején kezdtek el foglalkozni a modellezők. Első távirányítók rádióamatőr körökből indultak el, és eleinte saját építésű, megbízhatatlan és nehéz hangfrekvenciás LC oszcillátorok voltak. A kapcsolók, botok különböző értékű kondenzátorokat kapcsolását végezték a rezgőkörbe. Így a rádió eltérő frekvenciájú jelek kibocsátására volt alkalmas. A vevő egység pedig fogadta a jeleket és megfelelő szűrők segítségével a jelek megfelelő áramköri ágba voltak terelve.  Későbbiekben elindult egyes komponensek sorozatgyártása, megjelentek a földi adó és vevő egységek a gyártók kínálatában. Ezek a korai rendszerek változatlanul szuper-regeneratív áramkörökkel működtek, amelyek zavarták egymást, ha egy adott távolságon belül volt a két jeladó. Érdekesség-képpen érdemes megemlíteni, hogy az adók az elején miniatűr rádiócsövekkel működtek és táplálásukhoz egy 1,5V és egy 90V feszültségű forrást igényeltek.

Ahogy fejlődött a technika, egyre kisebb, egyre könnyebb lett a felszerelés, megjelentek a többcsatornás rendszerek, elkezdték használni az oszcillálást stabilizáló frekvencia-kvarckavicsokat. Tranzisztorok megjelenésével az RC világába beköszöntek a szuper-heterodin rádiórendszerek. Ezzel jelentősen lecsökkent a szomszédos rádiók egymásra gyakorolt hatása.

Manapság ha új távirányítót szeretne venni az ember igen sok dolgot kell odafigyelni: ár, funkciók, ergonómia, stb. Ami viszont a legfontosabb, hogy a kornak megfelelő megbízható rendszert használjunk, ami zökkenőmentesebbé teszi a kedvenc időtöltésünket. De legyen bármilyen is a rádió, elektromos jelet mechanikus elmozdulássá kell alakítani, ezért a távirányítással kapcsolatos témát az információs lánc végéről kezdeném.

Szervó

Felépítésében viszonylag egyszerű szerkezet, mely egy nyáklapból, rajta vezérlő elektronikával, egy egyenáramú motorból, fogaskerekekből áll, melyek egy csinos kis dobozba vannak zárva. Az erőátviteli lánc utolsó fogaskerekének a tengelye ki van vezetve a dobozból. Erre kerül majd csatlakoztatásra szervókar és arra tolórudak. Ugyanennek a fogaskeréknek az alsó része pedig egy potméterhez van erősítve, hogy visszajelzést tudjon adni a vezérlő elektronikának (egy korábbi jegyzet: Motor- és hajtásvezérlés alapelve). A fogaskerekek anyagukban eltérnek tervezett terhelések függvényeben. Leggyakrabban poliamid vagy egyéb műanyag-fogaskerekű szervákkal találkozunk, de készülhetnek fémből, karbonból és az extrém terheléseknek kitett szervók akár titánból is. Nagyobb terhelésre szánt szervók utolsó fogaskerekét egy vagy két csapággyal is alá szokták támasztani.

Szervó felépítése

Táplálás illetve parancstovábbítás céljából 3 vezeték van kivezetve a szervóból: test, táp és vezérjeljel. Sajnos a vezetékek színezése, sorrendje és csatlakozója gyártóként változhat. Modellezésben alkalmazott szervók táplálása általában 4,8-7,2V feszültséggel folyik. Szervó csatlakozók Fontos megjegyezni, hogy minél magasabb a feszültség, annál nagyobb nyomatékot fejt ki a szervó, de ezzel csökken az élettartalma is, – érdemes a gyártó által ajánlott értékeken belül üzemeltetni. A harmadik vezeték jeltovábbítás céljából lett kivezetve és általában 5V feszültségű PWM jelekkel közöljük a szervóval, mekkora szögben térítse ki az a kart.

Pulse Width Modulation – impulzusszélesség szervó vezérlés

Szervó PPMImpulzusszélesség vezérlés magáról beszél: az információtovábbítást egy jel szélességének változtatásával érjük el. A modellezésben használt szervomotorok vezérlése 50 herzes, vagyis 20ms hosszúságú keretben zárt jelekkel vezéreljük. A keretben levő 1500 μs (1,5ms) hosszúságú jel középállásba kényszeríti a szervó karját. A gyártók eltérő mozgásterű szervót gyártanak. Leggyakrabban használtak -60 és 60° között mozognak, és általában 1000-2000 μs jelszélességet igényelnek. Vannak nagyobb mozgásterű szervók is, így például futóműmozgató szervók általában 180° azaz ±90°-ra képesek elfordulni a középállástól számítva. Ezeknél vagy a visszajelzést biztosító potmétert, vagy az alkalmazható jelszélességet tartományát szélesítik, így a vezérjel 650 és 2350 μs hosszú lehet. Robotikában előfordulnak 360°-os vagy korlátozás nélküli szervók is, melyeknél pozíciómeghatározására enkodert használnak.

Az analóg módon működő szervók számára nem elegendő egyszer kiadni az impulzust, mert lehet, hogy szervókar még nem éri el a végső pozícióját. Azonkívül a jel nélkül a feszültségátalakító nem táplálja a motort, így nem keletkezik nyomaték a karon, “ernyed” a szervó. Digitális szervók esetében egy jel kiküldése elegendő, mert a beépített mikrokontroll gondoskodik a végső pozíció eléréséről, utána, jel hiányában azonban a digitális szervó is “ernyed”. A digitális szervót ezenkívül eltérő válaszreakcióra is programozhatjuk, amivel optimalizálhatjuk bizonyos feladatokhoz. Vezérfrekvencia terén a szervók elég rugalmasak. Analóg verziók 30-60 Hz-en, digitális példányokat pedig akár 300 Hz-en is vezérelhetjük. Ha kissé terheljük egy analóg szervó karját, halhatjuk a “cicergést”, mely a jelmentes és aktív szakok váltakozásából adódik. A szervók elektronika úgy van kialakítva, hogy meg tudja határozni, a vezérjelnek megfelelő pozícióban tartózkodik-e a kar, és ha nem, akkor melyik irányba kell elmozdulnia. A szervókar tengelyére kötött potméter a kar elfordulásáról nyújt visszajelzést az elektronika felé. Az elektronika pedig gondoskodik a motor megfelelő irányú elmosdatásáról, ha az nincs a beérkező jel szerinti helyen. Korábban a gyártók készítettek jobb és bal elfordulású szervókat arra az esetre, ha a távirányító pozitív kar elmozdulásra a szervó nem a szükséges irányba térne ki. Ezeket a szervókat általában eltérő színű matricával jelölték. Komputeres távirányítók megjelenésével ez az igény megszűnt, mert az irányváltást már a rádión el tudjuk végezni.

Vevő egység

RC vevők a méretükhöz képest igen fontos és feladatai közé tartozik a távirányító jelének detektálása, zajmentesítése, jelerősítése és dekódolása. Jel azonosítása tűnhet a legegyszerűbbnek, de ha jobban belegondolunk, a levegőben számtalan eltérő frekvenciájú és erősségű jelek hasítják az étert. Ebben a rengetegben megbízhatóan és egyértelműen megtalálni azt a jelet, ami a társ távirányítóból származik nem egyszerű feladat, ráadásul előfordulhat, hogy a szomszédban erősebb rádió is ad, vagy valaki más is használja az általunk frekvenciát. Ezért a gyártók féltve őrzik megoldásaik részleteit. A mai adóegységek teljesítménye törvényileg van szabályozva és nem haladhatja meg a 100mW-ot. Azonban közel hasonló elektronikai kialakítás mellett a vevőegységek teljesítménye jelentősen eltérhet. Magasan integrált mikrosémáknak köszönhetően ez a nagy “tudás” elfér egy 3-10 grammos egységben.

Ha egyszer a jelet megtalálta a vevő egység, a jel zajmentesítése után fel van erősítve a dekóder bemeneti jel szintjére. A dekóder feladata azonosítani a jelsorozat részeit, megtalálni a szinkron jelet (általában a leghosszabb jel a sorozatban) és szétosztani az egyes csatornák jeleit a megfelelő csatlakozókra, melyekre szervók, fordulatszabályzók, kapcsolók vagy egyéb elektronika lehet kötve. Általában az 1. csatornán a magassági, 2. – csűrő, 3. -tolóerő/féklap, 4. – oldalkormány és stb. A csatornainformációkat a távirányító rendszeresen frissíti, legalább 50 alkalommal másodpercenként. A csatornakiosztás változhat gyártóként, de lehet szabadon állítható is.

Vevőegységhez tartozik meg egy rugalmas antenna is. Gigahertzes vivőhullám esetén az antenna hossza centiméterben mérhető (2,4GHz – 12cm, 5,8GHz – 5cm). Megahertzes hullámok esetén a hullám hosszát méterekben mérik (75MHz – 4m, 50MHz – 6m, 35MHz – 8,5m), ezért a modellekhez ¼ hullámhosszal megegyező hosszúságú antennát használnak vagy elektromosan hosszabbítják. Mivel hangolt antennáról van szó, se rövidíteni, se hosszabbítani, sem feltekerni nem ajánlott. Módosítások hatása komoly mérőműszerek nélkül nem határozható meg, de valószínű, hogy a hatékonyság, és ezzel a hótótáv is csökken. Antenna vezetésénél tartsuk távol fém és szénszálas szerkezeti elemektől, elektromos motoroktól (pl. szervó) és egyéb elektromos zaj forrásaitól. Jó megoldásnak minősül, ha a vevő egység közelében kivezetjük a gép törzséből és a törzs külső felülete mentés vezetjük, vagy kifeszítjük a pilótafülke és függőleges stabilizátor között.

Az RC távirányítás fejlődése során több kommunikáció szabvány is látott világot. Ezekből számos egyidejűleg létezik és szolgálja a modellezni vágyókat. Ezekből csak két irányzatot szeretnék kiragadni és röviden bemutatni. Az egyik az a kristállyal beállított szuper-heterodin rádiók. Fő tulajdonságuk, hogy egy bizonyos frekvenciatartományra gyártott, pontosabban beállított adó és vevő páros pontos hangolását egy kvarc kristály segítségével végzik. Minden modellezésre kijelölt tartomány csatornákra van osztva. A csatornák számozva vannak ezért a kristályokon fel van tüntetve a csatornaszám, a rezgési frekvencia, és az is, hogy egy adó (TX), vagy vevő (RX) egység számára gyártott kristályról van szó (technológiából kifolyólag az adó és a vevő kristályai eltérnek, így nem cserélhetők fel). A kristály belső felépítése miatt igen érzékeny az ütésre és a vibrációra – könnyedén sérül a belső szerkezete. Ezért célszerű fokozatos figyelmet szentelni a vevő egység mechanikus behatások szembeni védelmére. Mivel egyszerre csak csak egy páros lehetett egy csatornán belül, így a csatornaegyeztetés és a csatornakiosztás egyik főfeladat volt repítés kezdete előtt. Szintézeres rádiók megjelenésével megszűnt kristályok kezeléséből adódó nehézség, hiszen kis csavarhúzóval pillanatok alatt be lehetett állítani a használt  frekvenciatartomány kívánt csatornáját, természetesen csak egyeztetés után. Korlátozott csatornaszám miatt népes rendezvények esetében szigorúan követni kellett az utasításokat és a házirendet, hogy két azonos csatornán működtetett rádió ne szóljon, és ne hallgasson.

Igazi megváltást a 2.4 GHz tartományban működő frekvenciaváltós rádiók hozták. Ezek esetében a rádió adót és vevőt “be kell mutatni egymásnak”. Ezt a folyamatot bindelésnek nevezik. Ismerkedés után a vevő egység csak a saját adója adatcsomagjait fogadja el. Ezen típusú rendszerek másik előnye, hogy üzemeltetés során egyedül megkeresi a legkevésbé zajos csatornát és azon kommunikál a vevővel. Kristály hiánya miatt kicsi és nem érzékeny a vibrációra. Ezen technológia számos lehetőséget nyújt és ezért több szabvány is jelent meg. Részletesebben ezekről majd egy külön jegyzetben.

Legyen szó autó, repülő, helikopter vagy egyéb modelltípusról, a távirányítás és bizonyos szabályzás elektromos megoldásait preferáljuk, kedvezőbb méretük, hatékonyságuk és súlyuk miatt, pár szót szükségeltetik ejteni az áramellátás lehetőségeiről.

Rádió adó egység, vagy ahogy szoktuk becézni, a távirányító fő feladata a karok, kapcsolók állapotát rendszeresen felmérje, elemezze ezeket és ennek megfelelően állítson elő egy olyan jelet (PPM avagy PCM) mely megfelelően modulálva átküldhető a repülő szerkezetünkre.

Elektromos áram forrásai

Pb – ólom-savas akkumulátorok nagy múltra tekintenek vissza: felfedezésüket 1859-re datálják. Ugyanebben az évben felfedezték a széncink elemeket és a NiCd akkumulátorokat, de mivel olcsó és egyszerű volt az előállításuk, alacsony energiasűrűségük ellenére (40-50Wh/kg) még mindig használják őket széles körben. Töltésük egyszerű, feszültségkorlatos, tárolásukat teljesen feltöltött állapotban végezzük éves tornáztatással (lemerít-feltölt) vagy cséptöltés mellett, néha töltött száraz állapotban. Alacsony energiasűrűségük miatt a modellezésben földi állomások és berendezések energiaellátására használhatók. Nehézfémtartalmuk miatt elhasznált elemeket elhelyezése csak erre szakosodott gyűjtőhelyeken engedélyezett!
Alkáli elemek
– egyszer használatos 1,5V feszültségű elem. Általában kis teljesítményű RC játékokban használják. Üzemeltetés során nem alkalmasak hirtelen nagy ampereket leadni – maximumuk 0,2C környékén van,– energiatárolásuk viszonylag magas: 3-4000mAh. Eldobhatóságuk miatt drága megoldásnak minősül mind környezetvédelmi, mind anyagi szempontból.
NiCd – nikkel-kadmium (nikad-nak szokták ejteni) újratölthető elemek, melyekkel kiválthatjuk az alkáli elemeket (AAA, AA, C, D). Ugyan a NiCd cellák csak 1,2V előállítására képesek, azonban több-százszor tölthetőek, akar névleges kapacitásuk hússzorosát is képesek leadni (20C)  és olcsók. Hátrányuk a töltés memória és viszonylag nagy önkisütési ráta, hosszabb tárolás után célszerű újraformázni. Töltés előtt ajánlott az akkumulátort kisütni (lemeríteni 0,5V alá). Töltésük során a következő áramértékek betartása maximalizálják a NiCd cella élettartalmát: töltés 0,1-0,2C -vel, a töltés utáni csepptöltés 0,05C. Jó választás lehet RC autók és hajók motorjainak, illetve repülők vevőegységeinek táplálása számára. Elhasznált/régi elemek háztartási hulladékgyűjtőbe dobni tilos!
NiMH – nikkel-metál-hidrid elemek tulajdonságuk jobbak, mint NiCd elemeké: könnyebbek, tovább tartják a töltésüket, de elődjeiket nagyobb csúcsáram jellemzi(15A vagy 8C fölött inkább NiCd akkumulátort használjunk). Sanyo Eneloop és GP ReCyko+ különösen jó energiatárolási tulajdonságokkal bírnak. Használat során egy kis odafigyelést igényelnek, “mert nem szeretik” a teljes lemerítést. Sajnos nincs semmi ingyen, minél kisebb a belső ellenállása az akkumulátornak, annál nagy áramot képes leadni, annál többet kell foglalkozni vele tárolás során. Ez lényegében annyit jelent, hogy tárolásukat félig feltöltött állapotban kell végezni és kb. 2-3 hetente le kell meríteni őket nagy árammal 0,9V-ig, és újratölteni 50%-ra. Kisebb súlyuk miatt alkalmazhatóak repülőgépmotorok táplálására, de legjobb alkalmazási területük az RC autók világa illetve készíthetünk vevő akkupakkokat (elérhetik a 100-110Wh/kg).
LiPo – lítium-polimer akkumulátorok nagy népszerűségnek örvendenek RC repülő- és helikopter-modellezők körében. LiPo cellák nagyon könnyűek a többi típushoz képest, akár 500 újratöltési ciklust is képesek elviselni, 3,7 V állítanak elő cellánként és rövid távon 100-200A leadására is képesek (75-100C, 3000W/kg). De figyelni kell a gyártó által előírt értékekre, mert nehezen viselik a túlterhelést és a túlmelegedést. Használat során a cellák feszültsége ne menjen 3,0V alá, egyéb esetben cellák épsége nem garantált, különösen, ha alacsony feszültségük tartós. Többcellás pakkok esetében használat előtt a cellák feszültségét azonos értékre állítsuk, a töltésüket pedig csak speciálisan kifejlesztett mikrokontroller-vezérelt balanszer töltővel végezzük (energiatárolásuk akár 300Wh/kg). Tárolás szempontjából igénytelenek, bár egyes források alacsony hőmérsékletet ajánlanak. Félévente érdemes ellenőrizni a feszültségüket és igény szerint feltölteni a cellákat 3,8V-ig. Korábbi cellák potenciális gyúlékonyságuk miatt lettek hírhettek, azonban a forgalomba található LiPo-k már stabilak, és odafigyeléssel sokáig szolgálnak bennünket. Röviden összefoglalva – mimóza lelkű óriások, – tartsuk őket szűk feszültségi tartományon belül (3,0-4,2V per cella).
LiIon
LiFe – lítium-ferrit-polimer ferrit akkumulátorok sokban hasonlítanak a LiPo társaihoz, azonban üzemi feszültségük alacsonyabb – 3,3V ezért a töltési maximum feszültségük is 3,6V! Névleges energiatárolási képességük 1700Wh/kg.
A123 – lítium-ion-fosfát akkumulátorok, melyek hasonló tulajdonságokkal rendelkeznek, mint a LiFe akkumulátorok, azonban nehezebbek, nagyobbak de nagyobb árammal tölthetőek, ami drasztikusan lecsökkenti az akkumulátorok töltési idejét. Tárol energiasűrűségük nagyobb, elérheti a 240Wh/kg és az újabb fejlesztésű cellák akár 100C nagyságrendű áramot is képesek leadni rövid időn belül.

BEC – áramforrások elektronikus megoldása, mely magasabb feszültségű akkumulátorokra kötve előállítja a szükséges 5V feszültséget. Általában 3-5A folytonos áram leadására képesek, ami kielégíti a közepes méretű modellgépek igényeit.

Profil és szárnyszerkesztő – Profili2

By , 2012. September 20 12:11

Végre egy program, amely sokkal többet ér, mint amennyit elkérnek érte. A Profil 2 – egy szárny profil kezelő, rajzoló és elemző szoftver, melyet egyre több képességgel ruháznak fel a fejlesztői. Nagy bővíthető adatbázisának és szimulációs moduljának köszönhetően nagy segítséget nyújt a megfelelő profil kiválasztásában. A program segítségével megtervezhetjük a modell szárnyát és előkészíthetjük a rajzokat vagy a gépi vágási fájlokat, legyen szó balsa vagy habmagos szárnyról. Természetesen a többéves modellfejlesztői tapasztalatot soha sem lehet pótolni, de ha rendelkezünk megfelelő alaptudással és egy kis gyakorlati múlttal, elkezdhetjük szisztematikusan fejleszteni a gépünket, és akkor nélkülözhetetlenné válik a tervezőasztalunkon.
A fejlesztő csapat oldalán a szoftver 3 eltérő verziója érhető el: 002 alap (base version) – lényegében hobbi szintű, kutatásra, fejlesztésre lett összeállítva, lehetőséget ad kiválasztott szárnyszelvények importálására/exportálására több fájlformátumban, polárgörbék számítására, habvágási sablonok készítésére, dobozos szárnyak tervezésére; XT – közepes felszereltségű programgyűjtemény. Lehetőséget ad DXF fájlok importálására, illetve saját profilok fejlesztésére több metódus alkalmazásával, szárnyszelvények többoldalas nyomtatására. Pro – verzió fejlett eszközöket hoz, melyet lelkes modellezők, klubok és gyártók számára ajánlják. Megengedi a profilgyűjtemény szerkesztését, ipari szabványoknak megfelelő fájlformátumok kezelését, 3 és 4 tengelyes maró-/vágó-gépek munkafájljainak előkészítését. Ezzel a verzióval CD-n vagy USB kulcson megkapjuk az adatbázisban fellehető profilok előre kiszámított polárjait, ezzel lerövidítve a tervezésre áldozott időt.
Licencelésben szintén megfigyelhető a csapat rugalmassága. Azon kívül, hogy rendelkezésre bocsátottak egy idő limit nélküli próbaverziót korlátozott funkciókkal, még három licenc típus közül választhatunk: egy diákok és hobbi modellezők számára, egy a klubok, alapítványok, oktatási intézmények számára (egy felhasználós), és egy klubok, alapítványok, oktatási intézmények és gazdasági intézmények számára (megosztott).
A szoftver telepítése nem igényel különösen kiépített számítógépet. ODBC32.DLL hiányában elég letölteni az MDAC.exe-t a társaság oldaláról.

Airfoils management/Processing – talán ezek lehetnek a legfontosabb 001 moduljai a programnak, a profil kezelők. Itt megtekinthető több mint kettőezer profil, és ha pontosan nem tudjuk a nevét a profilnak, fejlett szűrőrendszer segítségével rákereshetünk töredékszavakra vagy akár profil tulajdonságokra hibamérték meghatározásával (-tól -ig). Bár teljesen elvárható volt és mégis meglepő, hogy az alap verzió mennyi profil szerkesztési lehetőséget nyújt. Természetesen, hogy csak azután, hogy kiválasztottuk és klónoztuk a kiszemelt szelvényrajzot, már  szerkeszthetjük is. Ez akar táblázatos formában, ívek adatainak módosításával, akár grafikus módszerek egyikével tehetjük meg (mert kettő is van: külső kontúr vagy vastagság és középvonal szerkesztése). Ezenkívül végezhetünk hibridizációt is, vagyis két egész profilból vagy részeiből készíthetünk egy új profilt. Ha befejeztük a szerkesztést, akár össze is hasonlíthatjuk az eredetivel vagy több más profillal. Más programokkal való összeférhetőség miatt több formátumot importálhatunk a rendszerünkbe, illetve exportálhatunk ki. Áldott tulajdonsága a szoftvernek, hogy raszter grafikai elemzője is van, vagyis régi tervrajzból is bővíthetjük a gyűjteményünket.

PolarsXfoil (Mark Drela, GPL licenc) feldolgozó és elemző szoftverre épülő modul, mely professzionális analitikai módszerekre támaszkodva aerodinamikai számolásokat, elemzést végez el, legyen szó saját készítésű vagy szoftverrel érkező profilról. Ezen grafikonok az azokat olvasni tudók számára nélkülözhetetlen információt nyújtanak a repülőgép viselkedéséről, stabilitásáról, terhelhetőségéről. Az összehasonlító grafikonok a legjobb választást segítik elő bizonyos kritikus esetekre nézve. És ha már végeztünk a szárnyszelvények tanulmányozásával, ki is tudjuk nyomtatni a szelvényeket, ezenkívül a program segít megtervezni a bonyolultabb szárnyakat is, bordákkal, könnyítésekkel, borítással vastagságának figyelembevételével.

011 012 013 015 cpx cpv

Miután kiválasztottuk a megfelelő profilt vagy profilokat, a megfelelő sebesség és felületi terhelés tartományban a Profili2 további segítséget nyújt a szárny szerkesztésében, immár közeledve a gyakorlati megvalósításhoz. Legyen szó az egyre kedveltebb hab és habmagos, vagy fából épített szárnyszerkezetekről, a szoftver segítségével létre tudjuk hozni a bordák és a szárnyfelek virtuális tervét és a kész terveket 1:1 arányban kinyomtathatjuk vagy fájlba menthetjük előre beállított papírméret alapján darabolva azt. Manapság egyre elterjedtebbé váló komputervezérelt alkatrészgyártásban (CNC) is segítséget kapunk a programtól. Végső lépésként a szoftver lehetőséget kínál három- és négytengelyes CNC fájlok kiexportálására, így megfelelő műszaki háttérrel, vagy egy erre szakosodott vállalkozást megbízva, a tervezett alkatrészekből könnyedén bordákat és más alkatrészeket kaphatunk, hosszadalmas műhelymunka nélkül.

Wing Panel Management. A szárnypanelek kezeléséhez szükséges funkciókat a főképernyő „Panels” menüpontja alatt a „Panel Management” alpontban érhetjük el. Amennyiben már rendelkezünk kész tervekkel, a programon belül itt találjuk-, nyithatjuk meg őket szerkesztésre, vagy hozhatunk létre új szárnyterveket. Szintén itt találhatóak az exportálási, nyomtatási és CNC beállítási funkciók is. Mivel ezen eszközök a gépi háttér viszonylatában jelentősen eltérhetnek, a funkciókat nem részletezzük, de teljesség igénye nélkül lehetőségünk van például a nyomtatási méretekkel kezdődően, vágásvastagság, marófejek alaki és méretbeli paramétereinek beállítására is.

Alapjában véve a Profili2 két típusú – trapezoid és elliptikus – szárnypanel tervezésére kínál lehetőséget, de a megfelelő paraméterezéssel e két kategórián belül szinte bármilyen formájú szárnyat megrajzolhatunk, az ívelt, hegyes teljesítményvitorlákétól, a „piskóta”, vagy delta formájú vadászokon át a szögletes műrepülő szárnyakig.

A szerkesztés menete a szárny alakjának és főbb alaki tulajdonságainak: fesztáv, húrhossz(ok), nyilazás, stb.) megválasztásával és pontos beállításával kezdődik és a további lehetőségeket lépéses rendszerben 9 további menüpontban érhetjük el. A szerkesztőablakok között végig oda-vissza lépegethetünk, javíthatunk. Jellemzően minden menüpont két fő részre osztható. Az ablak felső részén találhatjuk az adott szerkesztendő tulajdonságok paramétereit szám és szöveges mezőkkel, az alsó grafikus részen általában három nézet – felső, törzsoldali borda, szárnyvég oldali borda – közül választhatunk.

clip_18 clip_19 Clip_4 clip_20

Második lépésben a bordák számát és távolságát állíthatjuk be. A szoftver képes automatikusan meghatározni az adott szárnyhosszhoz szükséges darabszámot és bordaközöket, de manuálisan is megadhatjuk a fenti értékeket.

Clip_6 A következő menüpontban nyílik lehetőségünk a gondosan kiválasztott szárnyszelvényt, illetve szelvényeket hozzárendelni a megtervezett panelünkhöz. A első és az utolsó profilt mi választhatjuk ki, az átmeneti bordákat a program automatikusan számolja ki és illeszti a szárnytervbe. Amennyiben bonyolultabb szárnyat tervezünk, a különböző szakaszokat külön-külön kell létrehoznunk.

Negyedik lépés a torziós szerkezet megtervezése. Amennyiben Clip_7 Clip_8 ez nem szükséges az összes opciót üresen hagyva léphetünk tovább, de a Profili lehetőséget nyújt a szárny felső és alsó (jellemzően vékony balsa) borítását külön megtervezni, milliméterben vagy colban megadva annak fedését belépőéltől számítva, így teljes vagy részleges héjszerkezetű szárnyakat tervezhetünk. Természetesen a kialakításnak megfelelően a bordák tervrajzán is helyet kap a torziós balsa réteg.

A szoftver logikai lépéseinek következő eleme a belépőél megválasztása. Fő opcióként a belépőél keresztmetszetét (forma, méret) határozhatjuk meg és illeszthetjük a bordák elülső oldalához x, y tengelyek mentén század-milliméteres pontossággal.
Hatodik lépésben a kilépőél szerkesztése következik. Háromféle verzió közül választhatunk, úgymint tömör és fedett élek, valamint kilépőél nélküli változat.

Clip_9 Clip_10 Clip_11 Clip_12

A tervezés vége felé közeledve jutunk el a merevítő(k) szerkesztéséhez szolgáló opcióig. Az egymást követő tervezőablakok közül ebben található a legrugalmasabb, legtöbb lehetőséget biztosító opciók együttese. Clip_12 Clip_13 Minden egyes merevítőt külön-külön tervezhetünk és helyezhetünk el a háromféle grafikus nézet segítségével, vagyis nemcsak a bordák x, y tengelyén, de bordától bordáig is. Hasonlóképpen állíthatjuk be a könnyítések alaki, méret- és számbeni tulajdonságait is, bár itt nincs lehetőség bordánkénti differenciálásra, amennyiben egy darabban terveztük a szárnyfelet.

A utolsó előtti opcióban az úgynevezett építő lábakat adhatjuk a bordákhoz. Ezek segítségével összeállításkor az összes alkatrész a megfelelő szögben és magasságban helyezkedik el a sablon felett.

Végezetül három fő nyomtatási opciót kapunk, amelyek ablakával zárul a szárnytervezés ezen szakasza. A szoftver generál egy felülnézeti képet bordákkal, merevítőkkel és torziós borítás rajzolatával, amit építési Clip_16 Clip_17 sablonként tudunk használni. Megkapjuk ezenkívül az összes borda rajzát 1:1 arányban, valamint a belépőélhez tartozó negatív mintákat. A beállított papírméret alapján a Profili automatikusan helyezi el, vágja és illeszti kinyomtatandó ábrákat oldalanként.

A tervezés végeztével visszatérünk a panellistánkhoz, ahol lehetőségünk van újraszerkeszteni azokat, vagy a fent említett módokon exportálni, illetve menteni különböző nyomtató és CNS készülékkel történő feldolgozás céljából.

Ahogy látható. ez a program kifejezetten a modellezőknek készült, de nem csak számukra lesz hasznos. Sok időt és munkát spórolhatunk meg a program használatával. Menet közben új megoldásokat is alkalmazhatunk kedvünk szerint, természetesen józan ész és biztonságos építmény keretein belül. Végül csak annyit szeretnénk üzenni a jó munkát helyett, hogy kellemes időtöltést kívánunk mindenkinek a tervező munkához :).

Főbb paraméterek meghatározása

By , 2012. September 13 13:51

A kis sebességek aerodinamikája terén több mérnök és egyetemi professzor kitartóan dolgozik azon, hogy az analitikai módszerek minél jobban megközelítsék a tapasztalati eredményeket, megbízható támpontot nyújtsanak a tervezésben. A szerkezeti megoldásokkal együtt, szinte elkerülhetetlen jelleggel, magukkal hozzák azokat a tervezési megoldásokat, melyek jó modellrepülőgép megépítéséhez nélkülözhetetlenek. Esetünkben azonban a módszertan inkább közelítő jelleggel bír, mely segítségével meghatározzuk ugyan egyes paraméterek nagyságát de legalább 20%-os biztonsági tartalékkal kell számolnunk. A gép elkészültével, berepítés után derül ki csak, hogy megépített gépünk tudja-e nyújtani azt, amit megálmodtunk. Egy valamit azért mindig szem előtt kell tartanunk: csak jól megtervezett, megépített gépet lehet jól trimmelni!

Modelltervezés során a modell paraméterei, mint a szárnyfesztávolság, a húr hossza, a gép hossza, a legáltalánosabb és elsősorban megválaszolandó kérdések közé tartoznak. A modell teljesítménye a méreteivel együtt nő, a gép láthatósága javul, aerodinamikailag kedvezőbb körülmények között repül, de nehezebb a szállítása és sérülékenyebb is; 3 méternél nagyobb gépek esetén kompozit anyagok használata már elkerülhetetlen. Ezért a 1600-2400 mm szárnyfesztávolságú modell építése, tervezése és építése ajánlott azok számára, kik jól teljesítménnyel rendelkező és szállítható modellrepülőgépet szeretnének viszonylag rövid időn belül.

A szárnyra ható erők számításánál figyelembe kell venni azt, hogy a szárnyunk véges és a szárny végén “szivárognak” az erők, ráadásul, minél hosszabb a szárnyvég húrhossza, annál nagyobb a vesztesség. Ezen vesztességek mértékét a szárnyunk kialakításának jellemzői jelentősen befolyásolják. A végtelen szárnyra tett megállapítások ugyan igazak véges szárny esetében is, de a véges szárny fölött és alatta létrejött nyomáskülönbség megpróbál kiegyenlítődni, ezáltal az áramlatok oldalirányú mozgás is végeznek, térbeli áramlást hozva létre a szárny körül. Felülnézetben az áramlatok a véges szárny fölött a nagyobb íveltségű szárnyszakasz felé hajlanak, ahol alacsonyabb a nyomás (általában a törzs felé), míg szárny alatt az áramlatok a magasabb nyomású területekről a szárnyvégek felé hajlanak. A kilépőélnél a két réteg nyomása már közel azonos, de a részecskék áramlási iránya és sebessége eltér. A különböző irányú áramlások egyesülésekor a kilépő él mögött örvények keletkeznek, örvényfelület alakul ki. Különösen erős örvények alakulnak ki a szárnyvégek körül. Az indukált örvények energiát vonnak el a rendszerből és ezáltal csökkentik a szárny hatékonyságát, ezért kialakulásukat indukált ellenállás kíséri. Az áramlások oldalirányú eltolódása, és így az indukált ellenállás szorosan is a felhajtóerő keletkezéséhez kötött jelenségek, és alakulásuk annak nagyságától függ. Az indukált örvények hatására az egész áramlás iránya megváltozik, lefelé terül el. Mivel a nyomás hangsebességgel terjed, így a kitérés már a szárny előtt elkezdődik. Ennek köszönhetően a szárny valós állásszöge kisebb a geometriainál – ez az indukált állásszög. Newton törvényeit alkalmazva belátható, a felhajtó erőnk annál nagyobb, minél nagyobb légtömeget tudunk mozgásba hozni!

Veges szárny éramlásai

Ha már eldöntöttük, milyen fesztávolsággal fog bírni a modellünk, akkor következhet a szárny oldalviszonyának a meghatározása (jelölése görög labda [Λ] vagy AR). Az oldalviszony egy dimenzió nélküli szám, és a szárny karcsúságát jellemzi. Téglalap alakú szárny esetén ez a szárnyfesztáv és a húr hosszának a viszonya (\frac{b}{l}), egyéb formájú szárny esetén a következő a fesztáv négyzetét osszuk a szárny területével:

AR = \frac{b^{2}}{S},

ahol az S – a szárny alaprajzi területe, a b – a szárnyfesztávolság,Egyenes téglalap alakú szárny korrekciós együtthatói l – profilhúr hossza. (A méreteket általában dm-ben számoljuk)

Indukált ellenállás tényezőjét a következő képlet szerint állapítjuk meg:

    \[C_i_n_d=\frac{c_y^{2}}{\pi\cdot AR}(1+\delta ) = 0,318 \frac{c_y^{2}}{AR}(1+\delta);\]

ahol cy – a profil felhajtó-erő tényezője, δ – szárny alaki tényezője: ellipszis – 0; trapéz – 0,05-0,1… . Képlet alapján kijelenthető, hogy az indukált ellenállás nagysága a felhajtóerő-tényező négyzetes arányban függ, márpedig a szabadon repülő és vitorlázó gépek Cy értéke nagy, ezért indukált ellenállásuk csökkentése modell teljesítménye szempontjából jelentős lehet.

Számos kísérletben kimutatták, hogy az oldalviszony fontos szerepet játszik a felhajtóerő és az ellenállás alakulásában. Ahogyan az a grafikonból is kitűnik, kisebb oldalviszonyú szárny esetében ugyanolyan felhajtóerő eléréséhez nagyobb állásszög szükséges. Az indukált állásszög akár 3-5° is nagyobb lehet végtelen szárny esetében vett effektív szöghöz képest. A grafikonokból az is kiderül, hogy bár a karcsú szárny hatékonyabb a felhajtóerő termelésében, de emellett kisebb állásszögnél esik át. Ellenállás tekintetében a karcsú szárny előnyösebb.

Szárny oldalviszonyának hatása a felhajtó erő alakúlásáraSzárny oldalviszonyának hatása az ellenállásra

Ezután teljesen természetesnek hat az a kérdés, hogy mégis mennyi legyen modellünk AR értéke, de a válasz nem olyan egyszerű. Ugyanis, minél nagyobb az oldalviszony, annál karcsúbb a szárny, annál kisebb az indukált ellenállás (kisebb nyomáskülönbséget kell kiegyenlíteni). Egyúttal, ha ugyanazon szárnyfelület esetén növeljük a szárny karcsúságát, csökken az áramlás lefolyását jellemző Reynolds- szám (rövidül a húrhossz). A következő nomogram gyakorlati kísérletekre támaszkodva, segítséget nyújthat a helyes érték választásában.

A Szárny oldalviszonyának hatása az ellenállásragyakorlatban jól bevált értékek a nomogram zöld területen találhatók. Berajzolt minta szerint egy 2650 mm fesztávolságú modell esetén az oldalviszonyt 10,5 és 16,5 értékek között vehetjük fel, az ajánlott értékek azonban 12,5 és 15 közé esnek. Tehát az oldalviszony mindig a modell méretétől függ, és úgy kell megválasztani, hogy a legkisebb szelvényhosszúságú rész is a kritikus Re szám felett repüljön. Ahogy a modell-aerodinamikai kutatások nyomán kis Re-számoknál egyre stabilabb és kellő felhajtó erőt szolgáltató profilok jelennek meg, úgy a megengedett és ajánlott terület maximális határai egyre feljebb kerülnek a jelenlegi képhez képest. Figyelembe kell azonban venni azt is, hogy a modellünknek mekkora a káros ellenállása – a modell nem emelő részeinek az összesített ellenállása. Nincs ugyanis értelme az indukált ellenállás végtelenbe menő csökkentésének, ha nagy a modell káros ellenállása. A teljesítmény vitorlázók káros ellenállása igen kicsi a többi modellhez képest (nincs légcsavar, nincs hengerfej, stb.), így az indukált ellenállás a modell összellenállásának a felénél is nagyobb lehet, ezért ilyen modelleknél indokolt az indukált ellenállás-csökkentés.

Erő hatására a szilárd testek méretüket, alakjukat megváltoztatják. Nincs ez másként a szárny esetében sem. A szárny igénybevétele a szárnytőnél a legnagyobb. Ezért nem minden merevítőt szükségeltetik végig vinni a szárny teljes hosszán, a borítást is vékonyabbra lehet készíteni a szárny vége felé, ezáltal könnyebbé téve a szárnyat. Ezért aerodinamikai, de legfőképpen szerkezeti okok miatt gyakran alkalmaznak trapéz formájú szárnyakat vagy szárnyvégeket. Három okunk is lehet, miért válasszuk a trapézformát: rövidebb a szárnyvégprofil húrja, és ezáltal az indukált ellenállása, egyenletesebb a felhajtóerő eloszlása a téglalap formajuhoz képest, különösen nagyobb állásszögeknél, könnyebb. Nagyméretű gépeknél trapéz szárny különösen ajánlott. Ezen szárnyak egyik jellemzője a λ trapézviszony– a legkisebb és a legnagyobb szelvényhúrok viszonya.

\lambda = \frac{l_v}{l_t},

ahol lv – a szárnyvég profijának húrhossza, lt – szárnytőprofil hossza.

A véges szárnyon végbenő állandó nyomáskiegyenlítés és oldalirányú áramlás miatt egy véges téglalap alaprajzú, elcsavarás mentes szárnyon a felhajtóerő nem oszlik el egyenletesen, hanem a szimmetriasíktól a szárnyvégek irányába haladva fokozatosan csökken. Ugyanakkor a leáramlás sebessége, az indukált ellenállás nő a szárnyvégek irányába. Ez azt eredményezi, hogy teljes azonosság ellenére a véges szárny közepes cy kisebb a végtelen szárny értékéhez képest. Az erők eloszlásának ismerete repülőgép tervezés szempontjából nagyon fontos.

[kép]

Az 1930-as években eleinte empirikus módon, trapéz szárny lekerekítése útján, később pedig Prandtl áramlástani elméletére támaszkodva, matematikai alapokon is bebizonyították, hogy az elliptikus szárnyforma szolgáltatja az optimális aerodinamikai viszonyokat: a felhajtóerő a szárnyvégek felé haladva csökken nullára, a leáramlás pedig állandó szárnyvégtől szárnyvégig. cind=cy2\πΛ képlet alapján az indukált ellenállási tényező ekkor a legkisebb.
Ilyen szárnyaknak az a hátránya, hogy bonyolult a megépítésük, hiszen bordapáronként újra kell tervezni a szelvényeket. Ezenkívül nem csak a felülete ívelt, hanem a be- és a kilépőél is, átesésük hirtelen következik be, és eközben a csűrő felületek hatékonysága is jelentősen romlik. Ezért a gyakorlatban inkább a tégla és a trapéz, illetve ezen formák kombinációjából származó szárnyak dominálnak. Azonban az elliptikus formától való eltérés a hatékonyság romlásához vezet. Belátható, hogy a szárny eltérő formái eltérő hatást gyakorolnak a folyamatok lefolyására, vagyis a tervezésnél számításba kell venni.

A véges terjedésű szárny ellenállása két részből áll: profil- és indukáltellenállásból, ezért az ellenállás tényezőjét a következő formula adja:Szárny összes ellenállása

c_s_z= c_x + \frac{c_y^{2}}{\pi\cdot AR}(1+\delta) \approx c_x + 0,318 \frac{c_y^{2}}{AR}(1+\delta);

ahol cy – a profil felhajtóerő-tényezője, cx – a profil ellenállás-tényezője, δ – szárny alaki tényezője: ellipszis – 0; trapéz – 0,05-0,1… .

Az összesített szárny grafikonjából azonnal kitűnik, hogy létezik egy olyan v sebesség, amik az alaki és az indukált ellenmállás egyforma, és akkor az összesített szárny ellenállása minimális. Az eddig elmondottak alapján indukált ellenállás annál kisebb, minél nagyobb a szárny oldalviszonya és kisebb a felhajtóerő tényező.

Profilok, diagramok, tulajdonságok

By , 2012. September 12 10:37

Lilienthal-féle poláris görbe A szárnynak tehát az a rendeltetése, hogy a repülőgép levegőben tartásához szükséges felhajtóerőt termeljen (Végtelen szárny aerodinamikája). Ennek az erőnek a létrejötte és nagysága a szárny geometriai kialakításától függ. A szárnyszelvények lehetnek szimmetrikusak, aszimmetrikusak, íveltek, S-formájúak és mind más-más tulajdonságokkal bírnak. Bár sok modellkészítő nem tartja feltétlenül szükségesnek egy új profil keresését a modellje számára, különösen, ha túl van motorizálva a masina, mert az nagyszerűen repül a régi szárnyprofillal és annak nagy ellenállása még hasznos is lehet leszállás közben. Azonban a vitorlázó gépeknél – ahol az egyetlen hajtóerő a gravitáció –, fontos szerepet kap a hatékonyság. Különösen igaz a megállapítás, ha még versenyeznek is a modellel.

Poláris diagram. Ahogy azt láttuk, hallottuk, éreztük már, eltérő állásszögeknél a levegőben haladó testen ébredő eredő erő is más. A profilok tulajdonságainak ilyen jellegű vizsgálatát először Otto Lilienthal kutató naplójában figyelhettük meg egy diagram formájában, mely egy ívelt szárny felhajtóerő nagyságának alakulását ábrázolta a légellenállás függvényében eltérő \alpha állásszögek mellett. Az állásszög sajnos nem mindenhol jelenti ugyanazt. Leggyakrabban a légáramlás irányvonala és a profil húrja által bezárt szöget értik, néha azonban a húr helyett az alsó alátámasztó vonalat veszik figyelembe. Ezért mindig tisztázni kell, mielőtt belefogunk a számolásokba, még ha az eltérés nem is olyan nagy.

Légcsatornás mérések eredményeként általában három grafikont kapunk melyek a felhajtóerő Cy, (néha Cf, Cl-ként jelölik ), ellenállás Cx (Ce, Cd) és nyomaték Cm alakulását ábrázolják különböző állásszögek függvényében. Mivel az ellenállás és a felhajtóerő változása nagyságrendekkel eltér, ezért a felhajtóerőt egy nagyságrenddel nagyobb skálán ábrázolják. A nyomaték ábrázolásánál a skála úgy van felvéve, hogy a pozitív értékek a belépő él felfelé, a negatív értékek pedig lefelé való tolásának mértékét mutatják.
Gyakran a felhajtó erő és az ellenállás viszonyát egy görbén ábrázolják. Ilyenkor a légerők eredőinek vektorait (Fr – jobb oldali képen szürke nyíl) rajzoljuk fel értelemszerűen úgy, hogy minden kezdőpontja az origóban legyen. Összekötve a különböző állásszegüknél kapott vektorok végpontjait, egy poláris görbét kapunk. Zsúfoltság elkerülése végett a Cx, és a Cy itt is eltérő léptekkel viszik fel a tengelyekre (általában 1:10-hez arány követendő). Így a diagram áttekinthető és jól kezelhető. Az előző cikkben bemutatottak alapján belátható, hogy vektorok vízszintes tengelyre dobott vetülete adja a Cx, függőleges tengelyre pedig a Cy tényezőket.

Profil diagramok Poláris diagram

Ezen diagramokból sok hasznos információt nyerhetünk ki. Első ránézésre meg tudjuk állapítani, mi a felhajtóerő legnagyobb és legkisebb tényezője (Cy=f(α) minimuma és maximuma), milyen állásszögeknél kapjuk ezeket az értékeket (αkr). Azonnal szembetűnik az is, hogy a példában vett aszimmetrikus szárny legkisebb ellenállását nem 0°-nál kapjuk, hanem szimmetrikus szárnyprofiloktól ellentétben, attól kisebb állásszögnél. Az is megfigyelhető, hogy az állásszög növelésével a szárny ellenállása eleinte csak kis mértékben, utána körülbelül 6°-8° környékén elkezd fokozatosan, αkr kritikus szög közelében pedig meredeken nőni. Eközben a felhajtó erő meredek, majdnem lineáris növekedést mutat, és csak a kritikus szögnél lapul. Minél meredekebben emelkedik a görbe, annál nagyobb az 1° állásszögváltozásra jutó felhajtóerő változás. Kritikus szöget elérve az áramlások a szárny nagy felületéről leválnak. Ekkor a felhajtó erő hirtelen lecsökken, az ellenállás megnő, a szárny átesik. A legjobb siklószám és merülősebesség ugyanazon szárny esetében nincs ugyanannál az állásszögnél és egy pár extra vonal megszerkesztését igényli majd.

A legkisebb merülősebességet nagyobb állásszögnél érjük el, mint a legjobb siklószámot. Egy adott profil alkalmazása esetén elérhető legjobb siklószám értékét a kezdőponttól a polárgörbéhez húzott érintő adja meg. Az érintkezési ponthoz tartozó cx és cy értékeket elosztva kapjuk a legjobb siklószámot, a cy/cx itt a legnagyobb, a eredő légerő vektora ezen a ponton zár be a legnagyobb szöget az áramlás irányához képest. A legkisebb merülősebesség (és ezzel együtt a legkisebb siklószöget) úgy kapjuk, hogy egy érintőt keresünk a görbéhez, melynek a Cy metszési pontja pont 1/3-a az érintkezési pont cy értékének. Ezen a ponton a cy3/cx2 emelkedési szám éri el a maximumát.

Negatív tartományban ugyanez a helyzet, ugyanúgy megtalálhatók a “jelentős” pontok. Csak más értékeknél, mert a vizsgált profil aszimmetrikus. Szimmetrikus profilok esetében a pozitív és negatív tartományok grafikonjai tükörképei egymásnak. Megvizsgálva a leggyakrabban alkalmazott profiljainkat észrevesszük, hogy állásszög-tartományunk igen korlátozott, nagyjából 3° és 15°közé esik mindkét irányba. Az igazán jó teljesítmények sávja még ennél is sokkal szűkebb.

A szárnyszelvények légerőtani tulajdonságait elsősorban a geometriai kialakítása határozza meg, de ezen kívül számos olyan tényező játszik még közre, amelyeket közelebbről meg kell vizsgálni. Ilyen például a határréteg jellege, szárnyfelület simasága. Megvizsgálva a polárgörbék alakulását lényegében a repülőgép jóságát is megkörnyékezzük. Eltérő profilok grafikonjait összehasonlítva számos fontos megállapítást tehetünk profiljainkkal kapcsolatosan, azonban ezen erők összehasonlítását csak azonos megfúvási sebességnél célszerű elvégezni. Ezen ismeretek hasznosak lehetnek, ha kisebb mértékben igazítani szeretnénk a meglévő profilunkon.

Szárnyszelvény

d a szelvény vastagsága;
xd
a szelvény legnagyobb vastagságának a helye;
τ– kilépő él kialakítása.
f – a szelvény íveltsége;
xf
– az íveltség legnagyobb értékének helye;
r0– belépő él lekerekítésének sugara;

A profil geometriai paramétereit általában százalékban adják meg a húr hosszúságának viszonylatában. Vagyis, ha a szárnyunk profilja 100 cm hosszú, akkor a 18%-os (vagy c=0,18) vastagság abszolút értékben 18 centiméteres vastagságot jelent. Különböző alakú szárnyszelvények légerőtani jellemzőit szélcsatorna kísérletekkel állapítják meg és profilcsaládokat alakítanak ki. A szelvények a nevüket általában az aerodinamikai intézet, néha a kutató személy után kapják: CAGI, NACA, , Benedek. A szelvényeket családon belül számértékekkel jelölik, melyek a főbb geometriai jellemzőket adják meg. Így a NACA23012 nevéből a következő tulajdonságokat olvashatjuk le: íveltség 2%, íveltség maximuma 30%-on, vastagsága 12%, de a számozás családfüggő!

Felhajtó erő, ellenállás, nyomásközéppont és a Reynolds szám kapcsolata. (Re) – egy dimenzió nélküli szám, mely a kísérletben kialakított, és a gyakorlatban alkalmazott szelvény geometriai és áramlástani hasonlóságát adja meg. Profilok összehasonlításában nagyon fontos szerepet játszik, hiszen eltérő Re számoknál nem csak mennyiségi, de minőségi változásokat is figyelhetünk meg a szárny reakciójában. Mivel a szám sok paramétertől függ, és minden minden pontra figyelembe venni szinte lehetetlen, így közelítő számolást érdemes csak elvégezni nagyságrend meghatározása céljából, figyelembe véve, hogy a levegő átlag sűrűsége \nu=14,4·10-6 m2/s (15°C, 1013,2 mbar). Ezt követően a számot a test hossza (húr hossz) és áramlási sebesség (repülési sebesség) ismeretében könnyedén meghatározható. Belátható, hogy a modellrepülőgépek szempontjából a Re szám tartománya körülbelül 50 000 és 700 000 érték közé esik.

    \[ Re=\frac {lv\rho}{\mu}=\frac{lv}{\frac{\mu}{\rho}}=\frac{lv}{\nu}\approx 6,94\times 10^{4} lv\]

ahol \rho – a közeg (levegő) sűrűsége (kg/m³); \mu – az anyagra jellemző dinamikus viszkozitás (Pa·s), \nu – a kinematikai viszkozitás (m2/s), l – a húr hossza (m), v – az áramlás sebessége (m/s).

Aerodinamikai kutatások korai szakaszában már kimutatták (1937, NACA rep.: 586), hogy a hasonlósági mutató értéke jelentősen befolyásolja a maximálisan elérhető felhajtóerő értékét, a szárny ellenállását és a profil átesés körüli viselkedését. A kísérletekben megfigyelték, hogy az állásszög növelésével a felhajtóerő azonos sebességgel növekszik ugyanazon profil esetében (függvény görbéje ugyanolyan meredek). Azonban nagyobb Re számnál a felhajtóerő maximuma és az átesés is nagyobb állásszögnél következik be. Általában elmondható, hogy ha a profil jól teljesít alacsony Re számnál, akkor a magasabb tartományban sem lesz vele gond. Profil vastagság hatása a tulajdonságokra

A geometriai kialakítás és a tulajdonságok alakulása. Egy szárnyszelvény olyan jellemzői, mint vastagság (d), íveltség (f), azok maximumának relatív helyei (xd, xf) és a belépő él lekerekítésének sugara döntően befolyásolják a profil légerőtani tulajdonságait. Ezek közül talán a profil vastagságának a hatása a legegyértelműbb, hiszen ha vastagabb a profil, akkor a homlokprofilja, vagyis az áramlással merőleges vetülete nagyobb. A vastagság növekedésével azonban az ellenállással együtt a felhajtó erő maximuma is nő. A vastágsággal és annak maximális értékének helyét változtatva megváltozik a profil orrának lekerekítési sugara is, és ez elsősorban az αk – kritikus állásszög környékén érezteti hatását. Ha ugyanis a lekerekítési sugár nagy, akkor az áramlatok nem válnak le hirtelen a szárny egész felületén, hanem a leválási pont fokozatosan halad a profil orra felé. A hegyesorrú, és általában vékonyabb profilokon, az áramlás zavartalan egy bizonyos szögig, utána lavinaszerűen leválik az egész felületen, hirtelen ellenállás növekedést és felhajtóerő csökkenést idézve elő. NACA 0006 profil esetén Re 70 000 számnál átesés körülbelül 5°-nál következik be. Átesés utáni felhajtó erő növekedés a szárny alatti nyomásnövekedéssel magyarázható.

AProfil vastagság hatása a tulajdonságokra kísérletek tisztább képet nyújtottak arról is, miként viselkedik a szárny átesés előtt és legfőképpen utána. Lényegében átesés három főbb formáját különböztettek meg: hirtelen, éles és fokozatos átesés és természetesen ezek között számos átmenet létezik (lásd N60 profil tulajdonságait különböző Re számoknál). Eközben megfigyelték az átesés hiszterézis tulajdonságát is, mely azokra a profilokra jellemző, amelyeknél hirtelen felületi vonalvezetés változás (másként fogalmazva kis sugarú lekerekítés) található. A hiszterézis lényege, hogy az átesés után vissza is visszük a szárnyat az átesés előtti szögbe, az áramlások, és ezzel a felhajtóerő nem nyeri vissza eredeti értékét, míg a kritikus állásszög alá nem visszük a szárnyat. Egyes profilok különösen hajlamosak erre a “hisztire”, különösen, ha egy felületi maximumot egy hosszabb egyenes, vagy süllyedő (konkáv) szakasz követi.

Szimmetrikus profilokkal viszonylag alacsony maximális felhajtóerő érhető el, ezért csak a műrepülő repülőknél alkalmazzák illetve stabilizátorok kialakításánál. Az íveltség kialakításával, és annak értékének növelésével az elérhető felhajtóerő értéke is arányosan nő. Egy ilyen profil ellenállás-tényezője is kisebb, mint a hasonló vastagságú szimmetrikus profilé. Ezért a felhajtóerő növelése érdekében a középvonal íveltségének növelése gazdaságosabb megoldás. Hogyha különösen nagy felhatóerő-tényezőre van szükségünk kis sebességnél, akkor az íveltség maximumát célszerű a húrhossz utolsó harmadába helyezni. Az erősen ívelt profilok hátránya, hogy maximum elérése után erőteljesen átesnek és nagy a nyomásközéppont vándorlásuk.

Összegezve elmondható, hogy a profil vastagságának növelésével megnyújtja a felhajtóerő görbét Cy irányában, így nagyobb felhajtóerőt érhetünk el. Maximum pontjának előretolásával a görbe meredekebbé válik, és kisebb mértékben veszítünk a felhajtóerőből. Mindkét módosítás azonban alaki ellenállás növekedéssel jár előrehozott örvények miatt. Eközben a profil “nyugodtabbá” válik, ami az irányítást könnyebbé, kiszámíthatóbbá teszi. De hogy a vékony profilokat is dicsérjük, meg kell jegyezni, hogy alacsony Re számnál (30 000 környékén) és kis állásszögeknél a vékony profilú (~6%) vagy lapszárnyú gépek jobban teljesítenek, mint a gömbölyded társai. Analitikai módszerrel összehasonlítva sikerül kimutatni, hogy 200 000 értékig a vastag, 14-18% szelvények használhatóak sikeresen, de kezdve a 100 000 értéktől a többszázas tartományig a 8-12% vastagságú profil a preferált. Az íveltség fokozása pedig felfelé tolja a polárist, így a negatív tartományban kedvezőtlenebbül viselkednek. Ezért az ívelt profilok kevésbé alkalmasak a műrepülő gépek szárnyainak kialakítására. Mivel egyik érték sem növelhető korlátlanul tulajdonságok romlása nélkül, ezért az optimális választás körülbelül 10% vastagság és 2% íveltség környékén van, ahol cy/cx a legnagyobb értékeket vesz fel.

Minél nagyobb az íveltsége a profilnak, annál nagyobb a nyomásközéppont vándorlása, és annál nagyobb fogatónyomaték ébred a szárnyon, ami nagyobb stabilizátorokat igényel a kompenzáláshoz illetve változó megfúvásnál jelentős minőségi változást okoz. Nagyon ritka az egyszerű körszegmens formájú középvonal, általában bizonyos célnak megfelelően alakítják ki. Matematikai modellekre épülő profilok középvonala általában valamilyen szabályt követ. Például a NACA négyjegyű sorozata profiljainak középvonala két parabola szegmensből van képezve, melyek tangenciálisan vannak összekapcsolva a legmagasabb íveltség pontjában. Ezert a NACA profilokat nem csak íveltség magassága és helye alapján osztályozzák, hanem a középvonal sorozatokra is bontják. A legnépszerűbb a A=1 középvonal, mely egyenletes terheléseloszlást biztosít a profil mentén. A téma mélyebb megismeréséhez érdemes saját profilokat készíteni és elemezni tulajdonságaikat profilszerkesztő és elemző szoftverek segítségével (MacFoil, Airfoilplot, Compufoil, Xfoil, Profili).

A vastagság helyének módosításáról annyit kell tudni, hogy hatással van a lamináris áramlás megmaradására, ugyanis ez az áramlás marad, míg csökken a nyomás (vastagszik a profil). Nyomás növekedésével átvált turbulensé, melynek ellenállása nagyobb. Hagyományos szelvényeknél a lamináris áramlás a maximum a húrhossz 30%-áig tart ki. Ha azonban a maximális magasságot hátrább toljuk, a lamináris határréteg akár a húrhossz 40-60%-áig is kitart. Arra a kérdésre, hogy hol helyezkedjen el az íveltség maximuma,  a legnagyobb vastagság helye adja meg a választ. A gyakorlat azt mutatja, hogy ha a profil 30%-nál a legvastagabb, akkor az íveltség legkedvezőbb helye körülbelül a húrhossz 40%-ánál keresendő, a profil vastagsága a húrhossz 50%-ánál tetőzik, akkor az optimális íveltség helye 45% környékén keresendő.

Egy-két konklúzió az elméleti anyagból: 1. A jó átlagteljesítményt a minimális merülési sebességre való törekedéssel, vagyis minimális terheléssel és maximális cy3/cx2emelkedési szám elérésével tudjuk biztosítani. Az emelkedési szám csak profil, állásszög és Reynolds szám függvénye. Ezért a vitorlázó modellek teljesítménynövelő lehetőségei a megfelelő profil, maximális cy/cxértékhez tartozó állásszög beállítása és hogy a modell a kritikus fölötti Reynolds-számmal repüljön. 2. Vitorlázók számára alacsony ellenállás és forgatónyomaték alacsony Rn szám mellet nélkülözhetetlenek. Műrepülő gépek számára szimmetrikus profil alacsony Cm értékkel a jó választás fokozatos átesési tulajdonsággal a szűk fordulók miatt. Emellett maximális Cy értéket kell keresni, ami csak elérhető.

Végtelen szárny aerodinamikája

By , 2012. August 30 12:29

A modelltervezés talán legkritikusabb, legfontosabb művelete a megfelelő szárnyprofil kiválasztása. Lényegében több ezer profil áll rendelkezésünkre, de legjobb csak egy van. Igen ám, de mi van azokkal a szárnyakkal, melyeknél több profilt is alkalmaznak? Igazából legjobb nem is nagyon létezik, mivel minden gép más és más. Ezért itt csak az irányelvekről, illetve az egyes kategóriákban jól bevált szelvényekről beszélhetünk, mert minden profilválasztás szükségszerűen magával hozza a kompromisszumot. A megfelelő profil kiválasztása első sorban azon múlik, mennyire értjük meg a leíró adatokat, és mennyire ismerjük a trendeket. Az aktuális felhajtó erő, a szárny ellenállása és a nyomásközéppont vektora az alábbi hat plusz egy paramétertől függ, melyek közvetett/közvetlen módon kapcsolatban állnak a szelvény profiljának kialakításával:

Szárnyszelvény

Sebesség – mindhárom érték egyenes arányban változik a sebesség változás négyzetével.
Szárnyfelület – mindhárom adat egyenesen arányban áll a felület nagyságával.
Húr hossz – Reynolds szám és nyomásközéppont egyenesen arányos a szelvény hosszával.
Állás szöge – a hasznos tartományban (0-felhajtó erőtől átesésig), mindhárom érték nő, de nem lineárisan (az alaki ellenállás bizonyos tartományban csökkenhet) az állásszög növelésével.
Oldalviszony – egyenes arányban van mindhárom paraméter értékével.
Szárny formája – többdimenziós hatása van mindhárom tulajdonságra.

Reynolds szám (Re) – egy dimenzió nélküli szám, mely a kísérletben kialakított, és a gyakorlatban alkalmazott szelvény geometriai és áramlástani hasonlóságát adja meg. A szélcsatornában mért profil adatai akkor igazak a szárnyprofilunkra, ha a vizsgált alanyok geometriailag hasonlóak (a felület kiképzésében is) és a Reynolds számuk is azonos. Ezt a számot a test hossza (húr hossz) és áramlási sebesség (repülési sebesség) ismeretében könnyedén kiszámolható. Mivel ez a szám sok paramétertől függ, így csak közelítő, nagyságrendi számítást érdemes elvégezni. Ezt a gyakorlatban az ultra-könnyű gépek tervezésénél is alkalmazzák.

Szárnyon ébredő légerők, siklószám.

“Az áramlásra szögben állított és megfelelően kialakított testeken az áramlás irányára merőleges erő is keletkezik” – írja a “Vitorlázórepülő oktatási segédlet”. Szárnyszelvények esetében ez az erő sokkal nagyobb, mint az áramlással párhuzamos. Van egy része az áramlásnak, amely elérve a szárnyat szinte beleolvad a szárny felületébe és eltűnik. Ez a semleges szál, mely a T1 torló pontban éri el a szárnyat és a T2 hátsó torló pontban újra megjelenik. A fölötte levő légtömeg a szárnyat felülről, az alatta levő pedig alulról kerüli meg, és a kilépő él után kissé lefelé térítődik el.

Szárnyon keletkező légerők

Minden levegőben mozgó testre légellenállás hat. Ez az erő egyenes arányban áll a homlokfelülettel, a közeg sűrűségével, és az áramlási sebesség négyzetével (ρ=1,23 kg/m3):

F_x=c_x\cdot \frac{\rho}{2}\cdot v^2\cdot A=0,613\cdot c_x\cdot v^2\cdot A

Olyan testek esetén, amelyeken az áramlás irányára merőlegesen is ébred erő, az A vonatkozási felületnek az alaprajzi területét veszik. Ezen erőt a test geometriai kialakítása és felületének kiképzése egyaránt befolyásolja. A szárnyon keletkező légerők eredője Fr nem merőleges az áramlásra, ezért két erőre szokás bontani: Fy felhajtó erőre és Fx ellenállásra. Az erők felbontásának szabályai alapján:

F_r = c_r\cdot \frac{\rho}{2}\cdot v^2\cdot A = c_r\cdot q\cdot A

F_r^{2}=F_x^{2}+F_y^{2}\Rightarrow (c_r\cdot q\cdot A)^{2}=(c_x\cdot q\cdot A)^{2}+(c_y\cdot q\cdot A)^{2}}\Rightarrow c_r^{2}=c_x^{2}+c_y^{2}

Ez lehetővé teszi, hogy a szárnyak tulajdonságainak vizsgálata során csak a szárnyak szelvényeit vegyük figyelembe, és csak az eredő légerő- (cr), felhajtóerő- (cy) és ellenállás- (cx) tényezőket vizsgáljuk. Ezen tényezőket szélcsatornás mérések segítségével szokták meghatározni. A tényezők értékei erősen változhatnak az áramlás szögének függvényében. Különösen igaz ez a megállapítás az ívelt testekre (mint pl. profilozott szárny).

A szárny légellenállása két fő alkotóból áll. Az egyik az alaki vagy nyomásellenállás, melynek lényege, hogy a mozgó tárgy előtt túlnyomás – torló nyomás képződik, – és az áramvonalak az akadály előtt kitérnek. A kiugró peremeken, meredeken táguló légterületeken, vagy súrlódás hatására lassuló áramlatokban a hirtelen lokális nyomásnövekedésnek köszönhetően az áramlások visszafordulnak a felületnél, leválnak, örvények keletkeznek, melyek energiát vonnak el a rendszerből. A mozgó tárgy mögött negatív nyomású területek képződnek. Örvény képződésEz a két nyomás együttesen fékezi a tárgy haladását a levegőben.
Levegőben mozgó tárgyakra, ugyanúgy mint szilárd testek esetében, súrlódási erők hatnak. A súrlódási ellenállás a szilárd testekkel ellentétben nem a test és a közeg, hanem a közeg eltérő sebességgel mozgó rétegek között jön létre (egy jól képzett szárny összes ellenállásának akár 85%-át is kiteheti). A tesztek azt is kimutatták, hogy a hosszabb húrhosszal rendelkező szárny súrlódási ellenállás-tényezője kisebb a rövidebbhez képest.

Az ellenállás nagyságát az áramlás típusa is befolyásolja: a turbulens határréteg súrlódási ellenállása ugyan nagyobb, de a leválások később következnek be, emiatt a test ellenállása kisebb lehet, mint a lamináris határréteg esetében.

Egy repülőgép szárnyának minőségére, légerőtani jóságára a felhajtóerő és az ellenállás egymáshoz viszonyított nagyságából következtethetünk. Az sem mindegy, hogyan alakul a viszonyuk különböző állásszögeknél. Ebből kifolyólag a fejlesztések egyik célja, hogy a lehetőségekhez képest a felhajtóerő minél nagyobb legyen, miközben az előre haladást gátló ellenállást minimálisra szorítsák vissza. A minőség fokmérője tehát a siklószám, mely a két erő viszonyát adja meg: \varepsilon = F_x/F_y = c_x/c_y. Egy másik minőségi mutató a \gamma siklószög, mely a légerő eredőjének visszahajlási szögét mutatja qz áramlás normáljához (merőlegeséhez) képest: tg(\gamma)= c_x/c_y.

Nyomás eloszlása a szárnyszelvény körül. cfd2 A szárny felületének domborúsága miatt az áramlás sebessége a húr hossza mentén nem állandó sem alatta, sem felette, ezért a nyomás értéke is eltérő. A felhajtóerőt előidéző nyomáskülönbséget kísérleti úton mérik (sok 1mm átmérőjű lyuk a szárnyfelületen, melyek nyomásmérő műszerre vannak kötve). A mérési eredményeket azután grafikonba öntik, melynek vízszintes tengelye a szelvény húrhosszának százalékos értékét, a függőleges pedig a viszonylagos nyomásértéket ábrázolja úgy, hogy fent a negatív nyomás különbséget, vagyis szívó erőt, lent pedig a megnövekedett nyomást mutatja. Az így kapott nyomáseloszlási képet több állásszögre is elkészítik.

Nyomáseloszlás a szárnyon

A mérési eredmények alapján belátható, hogy a felhajtó erő nyomás különbség alkotta részének kétharmadát a szárny felett képződött alacsony nyomás, egyharmadát pedig a szárny alatt uralkodó magas nyomás adja (a szárny lényegében nem támaszkodik, hanem felszívja Nyomásközéppont vándorlásamagát a fölötte levő rétegekre).

Aszimmetrikus áramlásnál növekvő állásszögek esetén a nyomáseloszlás is változik: a görbék csúcsa és a görbe alatti terület előre tolódik. Ennek az az oka, hogy a torló pont az orrpontja alá csúszik, ezért a semleges szál fölötti áramvonalaknak erősen fel kell gyorsulniuk, hogy kikerüljék az orr részt. Ez a változás a nyomás eredőjének a támadási pontját, a nyomásközéppont vándorlását okozza a profil húr mentén: A szárny feletti és alatti nyomáseloszlás eredőjét külön-külön képezve erőpárt kapunk, melyek eltérő pontokon fejtik ki hatásukat. Így a szárnyon forgatónyomaték képződik, mely nagy állásszögeknél a szárny belépő élét felfelé, kis és negatív szögeknél pedig lefelé csavarja (nem teljesen lineáris a függvény, ezért katalógusban kell ellenőrizni minden Re számra). Még akkor is, ha olyan α0 szögben áll a szárny, melyben nem termel felhajtó erőt, vagyis a keletkező erők nagysága azonos, de ellentétes irányúak. Együttes hatásuk olyan nyomatékot hoz létre, mely a szárny orrát lefelé tolja, a kilépő élét pedig felfelé.

Főbb folyamatok áttekintésével ugyan még nem lettünk sokkal okosabbak a profilválasztás terén, de közelebb kerültünk a szárny működésének megértéshez. Innentől kezdve már csak a felhajtóerőről beszélünk, különböző paraméterek függvényében.

Repülőgép részei, alapfogalmak

comments Comments Off on Repülőgép részei, alapfogalmak
By , 2012. August 29 09:13

Első lépések mindig nehezek: rengeteg információt kell feldolgozni, sok technikát el kell sajátítani és a hobbi társak is sok ismeretlen szót használnak beszélgetve egymás között. Hogy lépést tudjunk tartani velük pár alapnak utána kell járnunk. Cikkgyűjteményt egy egyszerű témával kezdenénk –  a gép szerkezetével. Nincs ebben semmi misztikum, de nagyon csúnyán tudnak nézni ránk, ha helytelenül használjuk.

Légíjérművek osztályozása. Azon eszközöket nevezzük légijárműnek, melyek a levegő reakció erejéből nyerik a felhajtóerőt. Nem soroljuk közéjük a légpárnás járműveket, mert működésükhöz közeli szilárd vagy folyékony felszín szükséges.

Levegőnél könnyebb Levegőnél nehezebb
Hajóműves
– Merev vázú
– Váz nélküli

Hajtómű nélküli
– Szabad léggömb
– Kötött léggömb

Hajóműves
– Forgószárnyas
– Repülőgép

Hajtómű nélküli
– Vitorlázó repülőgép
– Sárkány

Merev-szárnyas repülőgépa levegőnél nehezebb közlekedési eszköz, amely az atmoszférában halad, merev felületei és a levegő reakcióerejéből keletkező felhajtóerő segítségével a repülési magasság és irány megváltoztatására, illetve megtartására képes hajtómű segítségével vagy anélkül. A motor nélküli merev szárnyú repülőgépek (vitorlázó repülőgép) esetében a magasság megtartása vagy növelése csak emelkedő légáramlat (lejtő szél, termik) segítségével lehetséges, de az ilyen járművek ennek hiányában is képesek a kontrollált repülésre és jelentős távolság megtételére.

01 02 03 04 05 06 07

Forgószárnyas repülőgép – ezen gép forgó felületek (forgószárny, rotor) segítségével állítják elő a felhajtóerőt, ezért képesek a lebegésre, illetve a helyből fel- és le-szállásra. Leggyakoribb típusa a meghajtott rotorral ellátott helikopter, de ide tartozik a nem meghajtott rotorral működő autogíró és a vegyes szerkezetű, hajtott légcsavaros és hajtott rotoros konvertiplán. De ezekkel minimálisan foglalkozunk.

Repülőgép szerkezeti elemei

http://downloads.cas.psu.edu/4h/AerospaceSupp/Activities/Airplanes/Overview/PlaneLesson2.htm

Törzs – A repülőgép teste. A szárnyak, a farokrész és a motor a törzshöz van erősítve.

Farok – A gép hátsó része, amely egy hordozza a vízszintes és függőleges stabilizátorokat. A magassági kormánylap zsanérokon keresztül rögzítve van a vízszintes stabilizátorhoz. Az oldalkormánylap pedig a függőleges stabilizátorhoz.

Magassági kormány – hinged surfaces on the horizontal part of the tail that swing up and down. These surfaces control the pitch of the airplane.

Oldalkormány – függőleges, jobbra-balra mozgatható felülete a faroknak. Ez a felület felel a gép legyezőmozgásáért.

Szárny – a vízszintes  sík, mely a fejhajtóerőt termeli. A csűrő és a ívelő lapátok csuklókon keresztűl rögzítésre kerülnek a szármyon.

Csűrő – szárny külső részén található fel-le mozgatható felületek. Míg a jobb csűrőlap fel, a bal csűrőlap le mozognak így kényszerítve a gépet a fordulóba.

Ívelő lapok – lefele nyitható felületei a szárnynak, melyek a törzs és a csűrők között helyezkednek el. Lehajtott állapotban növelik a szárnyon keletkező felhajtó erőt repülőgépek fel és leszállásnál.

Motor – Biztosítja a légcsavar forgatásához szükséges erőt mely huzamos repülés fenntartásához szükséges tolóerőt hoz létre.

Légcsavar – motor által meghajtott, tengely körül forgó aerodinamikai felület mely tolóerő előállításéért felel.

Spinner – Az orr kúp, amely magában foglalja a légcsavart rögzítő mechanikát, elősegít simább áramlását motor körül.

Fülke – ahol a pilóta ül repülés közben. Ott találhatóak a vezérlő eszközök és a műszerek kijelzői.

1, Sárkány
Sárkánynak nevezzük a repülőgép szerkezetét. A sárkány részei a törzs, amely a teher egy része, az utasok, valamint a személyzet szállítását szolgálja, a szárnyak, vezérsíkok, kormányfelületek, valamint a futómű.

a, Törzs
A törzs a repülőgép középső, bizonyos felhasználási típusoknál legnagyobb keresztmetszetű szerkezeti eleme. A törzshöz kapcsolják a repülőgép többi szerkezeti elemeit. A törzs elemei a törzskeretek (törzsbordák), hosszmerevítők, a külső repülőgépburkolat, a csatlakozási (szárnyakhoz) berendezések, a fülkék és rakterek konstrukciós felépítményei. Nagy sebesség mellett fontos a kis ellenállás, amely növeli a repülőgép hatékonyságát és sebességét. Az orrban helyezik el az irányításhoz szükséges navigációs és irányító berendezések egy részét, a műszerek nagyrészét, továbbá a pilóta is itt foglal helyet. Hátrább a személyzet többi része, az utasok, illetve a teher.

A repülőgéptörzs szerkezeti kialakításai
Egytörzsű repülőgép Hagyományos repülőgépforma. A repülőgépmotorokat a törzsben, a szárnyon vagy a törzsön kívül is el lehet helyezni. Ha a hajtóművet törzsbe építik, az kedvező légellenállást eredményez. A törzs hátsó részén, kívül elhelyezett hajtómű kedvezőtlenül befolyásolja a terhelés megoszlását, de légellenállás szempontjából előnyösebb. Nagyobb, többmotoros gépeknél a szárnyon helyezik el a hajtóműveket a kedvező terheléseloszlás végett.
Kéttörzsű repülőgép A kéttörzsű megoldás előnyeit többnyire kétmotoros, kisebb repülőgépeken használják ki. A személyzet és a felszerelés részére a szárny középső tartományában fülkét alakítanak ki. A két törzs karcsú felépítésű, hátul a farokszárnyakat fogja közre.
Csupaszárny repülőgép Törzs és farokfelület nélkül épített repülőgéptípus. A csupaszárny gépeknél az összes berendezést, a hajtóművet és a terhelést a szárnyban helyezik el, esetleg a szárny közepén (vagy szimmetrikusan elhelyezve 2-3 db) gondolát képeznek ki számukra. Repüléséhez, a tévhittel ellentétben nincs szükség semmiféle számítógépes, vagy egyéb rendszerre. Megfelelő szárnyprofillal önmagában is stabil, bár ezt kevés gyakorlati felhasználás igazolja. Mivel a csupaszárny repülőgép teljes felülete a felhajtóerő kialakításában segít és kevés kiálló, súrlódó szerkezeti elemet tartalmaz, nagyon kedvező a légellenállása, kicsi a felületi terhelése (ami nagyban javítja az irányíthatóságát, fordulékonyságát)

b, Szárny
A szárny a sárkányszerkezet azon része, amelyen a felhajtóerő keletkezik. Fő jellemzője a fesztávolsága, karcsúsága, profilja, nyilazottsága (hátra, ill. előre). Minél nagyobb a hátranyilazási szög, annál stabilabb és kormányozhatóbb a repülőgép a magasabb sebességtartományokban. Az erősen nyilazott szárnyak felhajtóereje kis sebességnél meglehetősen kicsi, így ezeknek a repülőgépeknek a fel- és leszállósebessége lényegesen nagyobb. A fékszárny a szárny része, melynek elsősorban fel- és leszálláskor van szerepe.
A szárnyak folyamatos fejlődését a különféle elméleti kutatások biztosítják (végtelen és véges szárnyelméletek).

A szárny felépítése
A repülőgép irányítását, valamint a szárny által keltett felhajtóerő változtatását a szárnyakon lévő kormányfelületekkel érik el.

1. Winglet (A törővégen). Csökkenti a törővégen keletkező turbulenciát, ezáltal a szárny légellenállását. Korszerű szállító repülőgépeken alkalmazzák, elsősorban nyilazott szárnyaknál.
2. Kis sebességű csűrő (a kilépőélen)
3. Nagy sebességű csűrő (a kilépőélen)
4. Fékszárnyak mozgatómechanizmusa
5. Krüger-lap (a belépőélen)
6. Orrsegédszárny (a belépőélen)
7. Háromszorosan réselt belső fékszárny (a kilépőélen)
8. Háromszorosan réselt külső fékszárny (a kilépőélen)
9. Áramlásrontó lemez (spoiler)
10. Féklap (áramlásrontó lemez)

A szárnyak fajtái
A szárnyak törzshöz mért elhelyezése alapján megkülönböztetünk alsó, középső és felső (váll-) szárnyat. Ha egy repülőgépen a vezérsíkok a szárnyak előtt helyezkednek el, akkor azt kacsaszárnynak hívjuk. A szárnyak formája alapján különféle szárnyakat különböztetünk meg.
Egyenes szárny: A szárny nyilazási szöge többé-kevésbé merőleges a gép hossztengelyére. Jellemzően a kis sebességű repülőgépeknél használják, a második világháború előtt gyakorlatilag minden repülőgép egyenes szárnyakkal rendelkezett. A vitorlázó repülőgépek, motoros könnyűrepülőgépek és légcsavaros utasszállító gépek többsége jellemzően ma is egyenes szárnyú. A nagy sebességű repülőgépek közül az amerikai F-104 Starfighter vadászbombázó egyenes szárnyúnak nevezhető.
A kis sebességű egyenes szárnyú gépeket néha „kétfedelű” konstrukcióban építik, itt a szárnyak egymás felett, kábelekkel és/vagy szilárd merevítőkkel egymáshoz kapcsolva helyezkednek el. Az ilyen repülőgépek a szükséges kisebb szárnyfesztáv miatt a levegőben mozgékonyabbak, hangárban könnyen tárolhatók, illetve baleset esetén jó ütközésvédelmet nyújtanak. Mezőgazdasági alkalmazásuk ma is gyakori (pl. Antonov An-2, AgCat). A háromfedelű gépek közül egyedül az első világháborús Fokker Dr.I. típus ismertebb.
Nyilazott szárny: Abban különbözik az egyenes szárnytól, hogy mind a belépő-, mind a kilépőél körülbelül azonos, a derékszögtől eltérő szöget zár be a repülőgép hossztengelyétől. A szárny lehet enyhén (pl. BAE Hawk) vagy erősen hátranyilazott (pl. MiG–19 vagy BAE Lightning vadászrepülőgépek). Napjaink sugárhajtású utasszállító repülőgépei szinte mind enyhén hátranyilazott szárnyúak, leggyakoribb az eredetileg a Boeing cég által kikísérletezett 35 fokos beállítás.
A hátranyilazott szárnyak hátránya az áramlás kisodródása a szárnyvégek felé, amit gyakran hosszanti elhelyezésű terelőlapokkal fékeznek meg. Nagy sebességű repülőgépeknél problémát jelent, hogy a hátranyilazott szárnyú konstrukciók hangsebesség közeli és a feletti teljesítménye erősen függ a területszabály következetes alkalmazásától, ezért ilyen kivitelű régebbi gépeken gyakran a szárny kilépőéléhez rögzített nagyméretű kúpokat találunk, amelyek a behúzott futómű tárolására (pl. Tu–134) vagy extra üzemanyagtartályként (Convair 990) is felhasználhatók. Ez az aerodinamikai probléma az új generációs, nagy tolóerő-felesleggel rendelkező hajtóművek alkalmazásával megkerülhető.
Léteznek előre nyilazott szárnyú repülőgépek is. Ezzel az egzotikus elrendezéssel a II. világháború előtt lengyel mérnökök kísérleteztek (Z–17/Z–18/Z–47), alatta pedig a német Junkers cég fejlesztett ki repülőképes prototípusokat (Ju 287). Az előrenyilazás elvileg kedvezőbb repülési tulajdonságokat ígér az örvények jobb kezelése révén, azonban a hátranyilazott konstrukcióval szemben a rezgések itt nem csillapodnak, hanem éppenséggel felerősödnek a szárnyvég felé haladva. Ennek következtében a hagyományos alumínium szárnyszerkezetek gyorsan kifáradásos vagy csavarodásos törést szenvednek, így nagy sebességű repülőgépeknél nem alkalmazhatók. A rendkívül erős szénszálas anyagok megjelenése tette lehetővé az előrenyilazott szárny alkalmazását szuperszonikus prototípus gépeken (X–29, Szu–47 Berkut), ezek sorozatgyártásáról azonban még nem beszélhetünk. A kis és közepes sebességű előrenyilazott szárnyú, sorozatban gyártott gépek közül említést érdemel az L–13 Blaník vitorlázó repülőgép és a német Hansa üzleti jet, mindkettő az 1960-as évek konstrukciója.
Trapézszárny: A szárny belépőéle pozitív, a kilépőéle negatív nyilazási szögű, azaz a szárny a törővég felé gyorsan elvékonyodik. Átmenet a többi kategória között, jellemzően a korszerű amerikai vadászrepülőgépek szárnyelrendezése.
Deltaszárny: Háromszög alakú szárny. A félszárnyak derékszögű háromszöget mintáznak, vagyis a belépőél erősen hátranyilazott, míg a kilépőél közel merőleges a gép hossztengelyére. A szárny a törővég felé általában teljesen elvékonyodik, azaz az ilyen szárny csúcsos, nincs vagy minimális a törővége. Jellemzően szuperszonikus repülőgépeknél használják, a francia Dassault vadászgépek, a Concorde és a Tu–144 utasszállítók, valamint a Space Shuttle és a Buran űrrepülőgépek deltaszárnyú konstrukciók. A MiG-21 és F-16 könnyűvadászgépeknél alkalmazott csökkentett méretű deltaszárny és a hagyományos vízszintes vezérsík kombinációja is ebbe a konstrukciós kategóriába sorolható.
Változtatható nyilazású szárny: Egy bonyolult szerkezet segítségével – nagy keménységű acélötvözetből készült forgócsapokon (ált. 2 db, oldalanként egy-egy db) – állítják a félszárnyak nyilazási szögét, lehetővé téve az üzemanyag-takarékos kissebességű repülést és a szuperszonikus tartományok elérését egyazon repülőgéppel. Jellemzően a harmadik generációs harci repülőgépek szerkezete. Visszatekintve ez a bonyolult konstrukció kudarcnak tekinthető, hiszen az ilyen kivitelben épült típusok: Mirage G, F–14, F–111, Tornado, MiG–23, MiG–27, Szu–17/20/22, Szu–24, B–1, Tu–22M, Tu–160 harci gépek nem tudtak szélesebb körben elterjedni magas beszerzési áruk és költséges fenntartásuk miatt, illetve repülési tulajdonságaik is elmaradtak az 1970-es évek második felétől megjelenő elektronikus kormányvezérlésű, trapézszárnyas és kacsa elrendezésű új gépektől. A Boeing cég egyedüliként tervezett varia-szárnyú utasszállító repülőgépet (Project SST), ez azonban soha sem valósult meg.
Waverider: Szó szerint: hullámlovas, deltaszárnyhoz hasonló elrendezés, amelynél a félszárnyak külső része körülbelül 30 fokig lehajtható, hogy a hiperszonikus repülés során a gép alatt keletkező lökéshullámokat csapdába ejtve többlet felhajtóerőt generáljon. Gyakorlati megvalósítására egyedül az amerikai XB–70 Valkyrie nehézbombázók prototípusain került sor az 1960-as években.
Forgószárny: Központi forgástengelyre rögzített hajlékony, egyenes szárnyakból (ún. rotorlapát) álló rendszer, amely a repülőeszköz álló helyzetében is felhajtóerőt termel. Helikoptereken és autógirókon alkalmazzák. Az ilyen rendszerben elérhető haladási sebességet kb. 400 km/h-ra korlátozza az a tény, hogy a forgószárny lapátok csúcsai hamar elérik a hangsebességet, ami a felhajtóerő nagyarányú csökkenését eredményezi. Emiatt a nagy helikopterek minél több, néha 6-7 lapátú rotorral készülnek, hogy azonos felhajtóerő termelés mellett a rotorkör átmérőjét és ezzel a kerületi sebességet is minimálisra csökkentsék.
Fékszárny: A fékszárny olyan mozgatható felület a repülőgép szárnyainak kilépő élein, amely kiengedési fokozataitól függően egyre jobban növeli a szárnyak felhajtóerejét. Ennek természetesen „ára” van, mivel a szárny légellenállása is annál jobban növekszik, minél jobban ki van engedve a hozzátartozó fékszárny, így csökkenti a repülési sebességet. A fékszárny kitérítésekor kezdetben a felhajtóerő-tényező nagymértékben, az ellenállás-tényező kismértékben növekszik. A kitérítés növekedésével az ellenállás-tényező egyre jobban növekszik a felhajtóerő-tényező pedig alig. Ezen kettős jelenség miatt használják a fékszárnyat a fel- és leszálláshoz, ahol viszonylag alacsony sebességre és közben elegendő felhajtóerőre is szükség van egyszerre.
A szárnyakon keletkező felhajtóerőt javítja a kiengedett fékszárny által megnövelt íveltség és az eközben nyert megnövekedett effektív szárnyfelület is. A fékszárny nem az egész kilépőél hosszában van kialakítva, hanem általában csak a géptörzshöz közel, a csűrőkormány mellett található szakaszon. Ezzel az volt a célja a tervezőknek, hogy a plusz emelőhatás minél rövidebb erőkaron hasson a repülőgéptörzsre, elkerülve ezzel a szárnyak felesleges terhelését az egyre vékonyodó külső részeken. A fékszárnyakat általában leszálláskor teljesen kiengedik – ez a repülőgép terhelésétől és az aktuális széltől is függ – ami elősegíti a gép nagyobb mértékű lassulását úgy, hogy a felhajtóerő elégséges marad ahhoz, hogy a gép ne adja le az orrát (az áramlás ne váljon le a szárnyakról, vagyis ne essen át). A repülőgép típusától, terhelésétől és a széltől függően felszálláskor is szokás a fékszárnyakat kis mértékben alkalmazni, hogy a relatíve alacsony sebességen történő talajtól való elszakadás pillanatában segítse a minél hatékonyabb emelkedést. Rövid vagy puha talajú pálya esetében különösen fontos a minél előbbi elemelkedés, ilyenkor a fékszárnyak mindig ki vannak engedve részlegesen (ez a felszállófokozat), hogy a szárnyak nagyobb felhajtóerőt biztosítsanak. A fékszárnyak kiengedésének minden géptípus esetében sebességi korlátozásai vannak, azaz bizonyos sebességek fölött a fékszárnyakat kiengedni nem szabad (illetve a sebességhatár elérésekor vissza kell azokat húzni), mert az áramlás károsítaná a kiengedett fékszárnyak és/vagy az egész szárny szerkezetét.

A fékszárnyak típusai
• Egyszerű fékszárny – Ez általában egy tengelyen mozog. Gyakorlatilag a szárny kilépőélének egy mozgatható darabja, amelyet meghatározott fokokra lehet lenyitni a szárny többi részéhez képest. Egy “20 fokos fékszárny” kifejezés azt jelenti, hogy a szárnnyal 20 fokos szöget zár be a kitérített fékszárny. A fékszárnyat felszálláshoz kevésbé, leszálláshoz jobban térítik ki. A kitérítés módja lehet manuális-rudazatos vagy elektromotoros, a nagyobb gépeken pedig hidraulikus.
• Megosztott fékszárny (Terpeszlap) – A felső és az alsó felület külön van. Az alsó felület az előbbiekben ismertetett módozatú fékszárnyként működik, míg a felső felület alig vagy egyáltalán nem mozog, így változatlanul megtartja az eredeti felső szárnyfelületet.
• Fowler-féle fékszárny – Mielőtt lefelé fordul még ki is csúszik a szárnyból. Ez az egyik legjobb az alacsony sebességhez, mivel igen jelentős szárnyfelület-növekedést eredményez. A korszerű utasszállító repülőgépeken többrészes megoldással alkalmazzák, tehát több részletben képes a fékszárny szétcsúszni és közben hátra-lefelé is nyílni, ezáltal adva a szárnynak hatalmas plusz íveltséget és felületet.
• Réselt fékszárny – Itt egy rés van a szárny és a fékszárny között, ami lehetővé teszi, hogy a szárny alól érkező nagynyomású levegő megfújja a fékszárny fölső felületét, ezzel késleltesse az áramlás leválását. Az ekkor kialakuló nyomáskülönbség-kiegyenlítődés miatt a légáramlás a fékszárnyon marad, ezzel késlelteti az átesést (azaz az áramlásleválást).
• Junkers-féle fékszárny és csűrő – A szárny kilépő éle mögött és alatt a szárny teljes hosszában egy kis húrhosszúságú segédszárny van. A szárny és a segédszárny között állandóan rés van, ezzel biztosítva többlet megfújást a kitérített segédszárnynak. Ez kisebb sebességeknél használatos, mint például a Junkers Ju-87 Stuká-nál.

Fékszárnyak
c, Vezérsík
A vezérsík feladata a repülőgép vízszintes és függőleges irányú stabilitásához való hozzájárulás. A vízszintes és függőleges vezérsík elnevezése azok elhelyezkedéséből adódnak, és természetesen ellentétes (ill. 90 fokkal elfordított) irányú hatással rendelkeznek. A Vízszintes vezérsík hagyományos felépítés esetében (“hátső szárny” néven illetjük sokan) azért felel, hogy a gép fel-le irányú vezetése biztosított legyen. Nagyon sok dologtól függ, hogy ennek formája, mérete, “profilja” milyen, de alapvető feladata, hogy segítse a függőleges iránytartást (másodlagosan a sebesség-stabilizálást), és elősegítse a váratlan (aerodinamikai) reakciók csökkentését, szóval, hogy stabilizálja a repülési tulajdonságokat. (Ezért Stabilizátor névvel is szokták illetni.) Pl. ha egy gép leejti orrát, gyorsulva zuhanni kezd, illő lenne a farkát lenyomni, ezzel lassítani a zuhanást, valamint áttételesen csökkenteni a sebességét. Fordítva is igaz persze, bár az kicsit bonyolultabb folyamat. A kis hajtóerővel rendelkező gépek (ilyeneket láthatunk mi, halandóak) esetében, főleg a vitorlás gépeknél a vízszintes vezérsíkot tekintjük a (függőleges) repülési iránynak. Ehhez képest a “nagy” szárny néhány fokkal megemelt állásszöggel bír. (Értelmezhetjük fordítva is, a szárny állásszögéhez képest a stabilizátor állásszöge kisebb, tehát gyorsuláskor lenyomja a gép farkát). Ezzel elérjük, hogy gyorsulásnál a szárny (amin a lényegi felhajtó-erő keletkezik) felemeli a gép orrát, ezzel visszalassul a gépünk, adott esetben befejezi a zuhanást is.
A függőleges vezérsík szerepe lényegesen kevesebb, de a gyakorlatban nagyon bonyolult e-nélkül repülni; a gép oldal-irányú iránytartását segíti elő. Nem kormányzott gép esetében is jelentkezik a két “fél-szárny” között eltérő légellenállás, sok ok miatt. Ha a gép farkát nem vezetnénk meg, az jobbra-balra forgolódhatna, kül. egyéb kihatásaival együtt.
A vezérsíkok összességét farokfelületeknek is nevezik. Ezek a szárnyakhoz hasonló kialakításúak, de méretük kisebb és (nem a vezérsík fogalmához sorolandó) elfordítható kormányfelületük van. A vezérsíkok lehetnek T elrendezésűek, de lehetnek V alakban is, amikor a vízszintes és függőleges kormányzási feladatot két V alakban elhelyezkedő vezérsík látja el, illetve például a Concorde vagy a Tu–144-es repülőgépen nincs vízszintes vezérsík, hiszen a kellő mértékben hátranyúló szárnyvégeken az kombinált csűrő és magassági kormány látja el mindkét kormányzási feladatot.d, Futómű
A repülőgép futóművének feladata, hogy biztosítsa a repülőgép irányíthatóságát, amíg a gép a fel- és leszállás során a földön tartózkodik. További feladata, hogy felvegye azokat a dinamikus erőhatásokat, amely a talajjal történő érintkezés során a gépre hatnak.
Kerekes futóművek Gumikerekes futóművek, amelyek felfújt gumiabroncsokból állnak. Nagyobb terhelések esetén a kerekek csoportokat, extrém nagy súlyú gépeknél egész sorokat alkothatnak, a jobb terheléseloszlás elérése miatt. Alacsony sebességű gépnél a futómű rögzített, nagyobb sebesség elérése esetén a futóművet behúzhatóra építik, amely jobb áramlási tulajdonságokat, nagyobb sebességet és alacsonyabb fogyasztást tesz lehetővé. A két fő futóművet leggyakrabban a szárny alá, a törzs középvonalához szimmetrikusan helyezik el. Más esetben tandem rendszert építenek, amelyben a két fő futóművet a géptörzs alá egymás mögött helyezik el, ez esetben két segédfutómű kerül a szárnyak alá.
o Farokkerekes futómű Ebben az építési módban a kanyarodást vezérlő, alacsony építésű kereket a farokrész alatt rögzítik a gép törzséhez. A főfutóműveket jóval a gép súlypontja elé helyezik, hogy a fékezéskor csökkentsék az előrebukás veszélyét. Ilyen futómű-elrendezéssel hárompontos leszállást kell végrehajtani, vagyis mindhárom futóműre nagyjából egyidejűleg kell a terhelést helyezni. Felszálláskor először a farokfutót emelik el a talajtól, majd további sebesség gyűjtése után hagyja el a gép a földet.
o Orrkerekes futómű A törzs elejére építik be a kormányzó kereket. A főfutómű kerekei nem kormányozhatóak, ezeket a gép súlypontja mögé helyezik, hogy a gép álló helyzetben ne billenjen hátra. Leszálláskor a főfutók érik először a talajt, majd további lassulás után ereszkedik a gép az orrfutóra. A rendszer erős fékezés esetén is biztosítja a stabil helyzetet.
Úszótest Vízi repülőgépeken alkalmazott megoldás. A vízi repülőgépeken a kerekek helyett két úszótestet építenek a gép alá, amelyek a víz felszínén tartják a repülőgépet. Az úszótestek mereven vannak építve, nem behúzhatóak, ezért a légellenállásuk jelentős. Más megoldás szerint a gép törzsét csónaktestként alakítják ki, amely kedvezőbb aerodinamikai alakot eredményez. Az úszótest leszálláskor csak közegellenállást növelő eszközökkel fékezhető.
Szántalpas futóműRitka típus. Csak olyan helyen alkalmazzák, ahol hómezőre kell leszállni, nincs biztonságos vízfelület vagy szilárd talaj. Tipikusan a sarkkutatók által használt repülőgépeken alkalmazott megoldás.e, Hajtómű
• Robbanómotoros hajtómű. A hagyományos dugattyús motorok csak légcsavar segítségével tudják megtermelni a repüléshez szükséges vonó- és/vagy tolóerőt. Olcsó megoldás, de csak hangsebesség alatti repülést tesz lehetővé.
• Gázturbina:
• Légcsavaros gázturbina. Gázturbinás hajtómű közvetlenül forgatja a légcsavart. Hangsebesség feletti repüléshez nem alkalmas. A gázturbina kompresszora, turbinája és a légcsavart hajtó reduktor egy tengelyen helyezkedik el.
• Szabadturbinás hajtómű, vagy más néven tengelyteljesítményt szolgáltató gázturbina. A kompresszort és a légcsavart hajtó reduktort működtető turbinafokozatok külön tengelyen helyezkednek el. Elsősorban helikopterek működtetésére alkalmazzák.
• Sugárhajtómű:
• Lüktető sugárhajtómű. Egyszerű felépítésű, kis helyigényű sugárhajtómű, melynek elve a tüzelőanyag impulzusszerű meggyújtása, majd az égés során ez szolgáltat lüktető sugárhajtást hasonlóan a dugattyús robbanómotorokhoz. Főként pilóta nélküli fegyvereken (manőverező robotrepülőgépek) és rádiótávirányítású repülőgép-modelleken alkalmazzák.
• Gázturbinás sugárhajtómű. Tisztán a sugárhajtás elvét hasznosító hajtómű. Hangsebesség alatti, de hangsebesség feletti repülésre is alkalmas. A hajtómű a fúvócsőben nagy sebességre gyorsított égéstermékek reakcióerejét (tolóerő) használja ki. Transszónikus sebességtartomány felső határáig biztosít tolóerőt.
• Utánégetős gázturbinás sugárhajtómű. Olyan gázturbinás sugárhajtómű, amelynek a fúvócsövébe (utánégető terébe) üzemanyagot fecskendeznek. A befecskendezett üzemanyag hatására a tolóerő megnövekszik, de jelentősen nő a hajtómű üzemanyag-fogyasztása. A második generációs vadászrepülőgépekben kezdték alkalmazni őket, a szuperszónikus sebeségtartomány felső határáig hatékony, hiperszónikusra (Mach 3) már nem, vagy csak ideiglenesen (ld. MiG–25 hajtóművei).
• Torlósugár-hajtómű. A legegyszerűbb felépítésű sugárhajtómű, amely nagyon kevés mozgó alkatrésszel állítja elő a hajtáshoz szükséges tolóerőt belső kialakítása révén. Működéséhez a hajtómű beömlőnyílásán (szívótorok) beáramló levegőnek egy minimális sebességet el kell érnie (200-300 km/h), így ehhez kisegítő meghajtás szükséges (például hordozó repülőgép). Ilyen a ramjet és a scramjet. Nagy sebességű repülés érhető el vele (Mach 3-10).
• Kombinált sugárhajtómű. Ez a gázturbinás sugárhajtómű és a torlósugár-hajtómű összeépítése. Célja a két hajtóműtípus hátrányainak kiküszöbölése (hiperszónikus sebesség el nem érése és minimális beáramló légsebesség szüksége). Lásd az SR–71 Pratt & Whitney J58 hajtóműveit.
• Rakétahajtómű. Olyan sugárhajtómű, ami működéséhez nem használja fel a környező levegőt.

2.  Landing Gear
3.  Wing strut

9.  Fin and Dorsal

14. Door
15. Seat
16. Windshield
17. Engine Cowl
18. Spinner
19. Wheel Cover
20. Landing Light
21. Wing Tip Light

Hogyan érdemes elkezdeni modellezni?

10 fontos kérdés, mielőtt megvennéd az első robbanós repülőd?

Repülö modellek kezdöknek!

Vákuum szivattyú hűtőszekrényből

By , 2012. August 22 09:18

Már korábban is megfordult a fejemben, hogy jó lenne építeni egy kompresszort szórópisztolyhoz, de mivel rossz volt a motor, család meglepett egy “igazi” kompresszorral: nyomáskapcsolóval, tartállyal, csövekkel. Így a gondolataim eltávolodtak a témától, de most megint előjött üvegszálas laminálással kapcsolatosan, de most akompresszor másik vége kell.
Hazafelé tartottam egy nap egy lomtalanítási területen át, és megpillantottam őt, olyan kicsi, és magányos volt ott, a leselejtezett hűtőben. Hoztam is azonnal. Egy kis bogarászás után találtam egy videót a videómegosztón. Első kapcsolatnak tökéletes.

Belső felépítése: a leforrasztott burok alatt egy 2 tekercses motor helyezkedik el. Az elsődleges tekercs hajtja a motort normális üzem során, a segéd tekercs csak az indításnál szükséges; starter jellegű feladata van. A motor rotorja spirális csatornával van ellátva, és az viszi fel az olajat a karter aljáról és teríti szét a tetején, biztosítva a szükséges hűtést és az alkatrészek kenését (részben ezért a hűtők indítása nem ajánlott 5°C alatt). A tengely meghajt egy dugattyút, mely folytonos sűrítést és ritkítást végez, míg a szelepek a megfelelő nyomást a megfelelő rézcsőhöz irányítják.

Elektronika: a motor indításához az elsődleges tekercs nem elegendő. Ahhoz, hogy elinduljon a motorunk, szükség van a másik tekercs rövid-idejű aktiválásához. Legegyszerűbben egy nyomógombbal oldható meg. Hűtőszekrényekben ezt egy relé végzi, melynek elektromágnese sorba van kötve az elsődleges tekercsel és úgy van beállítva, hogy bekapcsoláskor a többletáram aktiválja, de az üzemi áram nem elegendő a behúzáshoz. Ez aktívája a relét, az bekapcsolja a másodlagos tekercset, amely elsődleges tekercsel együtt mozgásba lendíti a rotort. Erre az felvett áram üzemi értékre esik, és a relé kikapcsol. Na de mi a helyzet akkor, ha indulna a motor, de a másodlagos tekercsben szakadás van, a bekapcsoló relé beszorult és nem aktiválja a másodlagos tekercse, vagy éppen nem tudja lekapcsolni a másodlagos tekercset? Ilyenkor a motor melegszik. Hogy baj ne történjen, van a motorban egy őrszem, egy bimetál lemez, mely bizonyos érték főlőt bonja az áramkört és amikor a motor kihűlt, a folyamat kezdődik előröl. Ezért nem célszerű relé nélkül üzemeltetni a motor. Kikapcsolásról nekünk kell gondoskodnunk, de építhetünk hozzá automata kapcsoló is (a hűtőben egy hőkapcsoló gondoskodik erről).
Kompresszor Kompresszor tekercsei 02490
Átalakítás problémái: a legnagyobb problémát az okozza, hogy a motor nem “nyitót” rendszerre van tervezve. Zárt rendszerben üzemelve az olaj nem kap oxigént, így nem is savasodik, nem teszi tönkre a tekercsek lakkját. Ha a kompresszor valamelyest ki is fújja az olajat, zárt rendszernek köszönhetően az egyszer úgyis visszakerül a motorba. A port, vizet mint szennyező anyagot már nem is említem. De a gyakorlat azt mutatja, hogy van remény. Bár kétségtelenül nem lesz örök életű, de hobbi felhasználás mellett ez akar tíz évet is jelenthet. Íme pár megoldás:
DIY Silent Compressor

DIY Mini Silent Compressor

Most, ahogy a cél és a lehetőségek tisztázottak, neki lehet látni a munkának.

Motor tesz. Tehát, ahogy már volt róla szó, ez a motor két tekercses, de az egyikre csak az indításnál lesz szűkség. Ha a motorról lehántjuk az relét, akkor előkerül a három kivezetés. Méréssel megállapítható, mely a közös, és mely a két független érintkező (általam mért értékek az érintkezők között: 40, 35, 75 Ohm ). Ha visszahelyezzük a relét, akkor a háromszögben elhelyezett érintkezők közül a felső (közös) egy fekete cilinderes formájú hőrelé egyik érintkezőjével, a bal alsó pedig közvetlenül a tápkábelre van kötve. A két alsó tű között egy érme nagyságú PTC található, mely kapcsolja a másodlagos tekercset, és indul a motor.

kompresszor-01 kompresszor-02 hőbiztosíték kondenzátor kompresszor-05

Vizsgálgatva a motort, rájöttem, miért dobták ki a hűtőt – megadta magát a PTC.  -85 kPa-on túl Ideiglenesen pótoltam egy gombkapcsolóval. A kapcsoló kivezetéseit kétoldalú nyáklemezre forrasztottam, így az eredeti kapcsoló helyére akadálymentesen behelyezhető lett. A kapcsolónak csináltam egy kis helyet a külső borításon. A szívó csonkra húztam egy szilikon csövet, annak másik végére vákuummérőt. Eljött az igazság pillanata, megérte-e vesződni vele? Bedugtam a konnektorba a villát. A motor enyhén morog, de még nem indult el. Megnyomtam 1 másodpercre a gombot. A motor enyhén megrebbent, és hallani a sziszegést. Alig hallható a motor járása, de működik! A nyomásmérő mutatója határozottan elindult a -80kPa irányába, és hamarosan el is hagyta azt, megállapodva valahol a – 85. érték környékén. Biztató eredmények. Vannak, akik már itt abbahagyják az átalakításokat, de én még szeretnék tenni pár lépést, hogy tovább élvezzem munkám gyümölcsét, ezért a további munkálatok a motor élettettalmának a meghosszabbítását és az automatizálást célozzák meg.

Motor olajozása. A folyamat úgy néz ki, hogy az alján van kb. 2,5-3dl híg olaj (pl. transzformátorolaj, ásványi kompresszor olaj). A motor tengelye belelóg az olajba. Annak a tengelynek a közepén van egy spirális furata. Amikor elindul a motor, a tengely szálija az olajat, és minden kopó alkatrész boldog. Az eredeti olaj nem jó nekünk, mert oxidálódik, és ezután oldja a tekercsek lakkrétegét. Ezért ajánlott kimosni a kompresszort egy kis szintetikus olajjal, és feltölteni újal.

(Folyt. köv.)

FlySky 9x – módosítások

By , 2012. April 12 12:32

És végre itt a várva várt pillanat (na, nem a távirányító számára)! Felfegyverkezve csavarhúzóval, forrasztópákával, új tudással, egy kis türelemmel, meg csipetnyi szabadidővel elkezdjük a beavatkozást (ha eddig még nem forrasztottál smd-t nyákra, talán nem a legjobb pillanat elkezdeni, de ezt mindenki döntse el maga). Akkumulátor maradhat, hat csavar ki, fedlap leszed, 12-tűs csatlakozó dugó gondosan kihúz az alapi foglalatból, és elérhetővé vált a távirányító szíve, pontosabban agya minden létfontosságú szervvel. Na nem kell azonnal kiszedni, meg lobotómiát végezni rajta, csak egy kis bájpassz kerül bele. Ha már egyszer felnyitottuk a gép burkát, akkor több problémát is próbáljunk meg orvosolni.

MODE1-töl a MODE2-ig

Gyakran találkozhatunk a fórumokon azzal a kérdéssel, hogy miben tér el a Mode1 és a Mode2 kialakítású távirányító? A Mode1 olcsóbb, tényleg jobb a Mode2-nél? Lényegében semmivel sem jobb, vagyis alkatrész mennyiségében nem térnek el. A felépítés szimmetriájából adódóan csak pár apró alkatrész került át az egyik oldalról a másikra. Ezek általában kapcsolók, feszítő rugók, fékező lap meg pár csavar. Ezen alkatrészek 15 perc alatt a megfelelő oldalra könnyedén átrámolhatóak. Kell hozzá egy kis csavarhúzó, egy csipesz, meg egy csipetnyi türelem. A lépésekről majd a képek mesélnek:

mode1->mode2 00 mode1->mode2 01 mode1->mode2 02 mode1->mode2 03 mode1->mode2 04 mode1->mode2 05 mode1->mode2 05 mode1->mode2 06 mode1->mode2 06 mode1->mode2 08 mode1->mode2 09 mode1->mode2 10 mode1->mode2 11 mode1->mode2 12

A bal bot függőleges középre-húzó kar rögzítő tűjét húzzuk ki, akasszuk le a visszahúzó rugót. A jobboldali bot féklemezét tegyük át bal bot mechanikájára és állítsuk be a kívánt feszességet csavarok meghúzásával. Jobboldali botnál tegyük helyére a visszahúzó kar rögzítő tűjét, és akasszuk be a rugót a műanyag fülbe. A kar egyik végét tegyük a rugó fülébe, nyomjuk le a kart és szintbe hozva a rögzítő tűvel, toljuk bele a tűt. Ezután már csak a rugók feszességének beállítása maradt hátra.

Szimulátor PPM jel normalizálása

Ha V.2 távirányítónk van, akkor első lépésként érdemes szimulátorozással kapcsolatos javítást elvégezni. A probléma ugyanis az, hogy ha a frekvencia modult nem lehet levenni, akkor általában a helyén marad és szimulátor használata során sugároz – a szimulátor kábel nem von el annyi energiát, hogy az RF modul ne tudjon inicializálni. Ezért egy kis ellenállással megbolondítva az áramkört el lehet érni a megfelelő feszültségesést. Ehhez megkeressük a megfelelő pályát a frontális burokra (előlapra) rögzített nyáklapon (balról 6. tű a tűsoron) és vékonyan elvágjuk a réz vezető pályát (nem kell gödröt vájni). Egy kis felületen eltávolítjuk a lakkot, hogy forrasztható legyen. Ezután vagy SMD, vagy furat szerelt 1 kOhm nagyságú ellenállást forrasztunk a szakadás áthidalására. Személy szerint az SMD megoldás közelebb áll hozzám, mert tisztább, szebb eredményt ad.

t9x szimulátor mod t9x szimulátor mod t9x_smd_simulator_resistor

Fordított polaritás elleni védelem

És megint valaki fordítva dugta rá a rádióra az akkumulátor, és megint elektromos meghibásodás füstje terjeng a levegőben. Aki megtette, tudja, hogy a 2 másodperc hosszú idő. Sajnos, ezt a számos modellezőnek bosszúságot okozó problémát még mindig nem orvosolták a gyártók. A csatlakozó olyan formájú, amely ugyan előfordul az akkumulátorok világában, de általában a 7,4V LiPo akkumulátorok balanszer végen. És ha azt rádugjuk, azonnal kapunk egy rövidzárlatot, mert a rádió lábkiosztás: [— + —]. Ha pedig JST csatlakozót használunk, könnyű mellényúlni. Az elsődleges megoldás tehát: FIGYELJETEK ODA A POLARITÁSRA!

De ha van egy kis időtök, egy kis műszaki érzéketek, egy forrasztó páka meg egy multiméter, akkor ‘bolondbiztossá’ tehető a készülék. Az első módszer az az aszimmetrikus csatlakozó alkalmazása, mely csak egy bizonyos tájolásban dugható össze. Ez lehet akár egy JST vagy egy fülezett szervó csatlakozó páros.

És ha már megtörtént a baj és az áram az ellenkező irányba megindult. Akkor készüljünk fel arra, hogy akár NÉGY darab feszültségszabályzót és pár elektrolitikus kondenzátort is gajra vágtunk. Nem nagy tétel, de méricskélni, forrasztani kell. Előfordul, hogy akkora áram indul meg visszafelé, hogy felperzseli a nyák áramellátó pályáit.

Legelső alkatrész, mely valószínűleg elfüstöl ilyenkor, az egy tantál elektrolitikus kondenzátor (sárga vagy fekete pici kocka fehér csíkkal). Általában ez egy 226C vagyis 22uF 16V értékű alkatrész. Tartalék miatt használjunk azonos kapacitású de 25V feszültségre szánt alkatrészt ha rádiónk táplálására 3S vagyis 11.1V LiPo akkumulátort használunk.

dsc_2229

Firmware frissítés – elmélet

Aki elérte ezt az oldalt, az már titkon, néha még saját magától is rejtegetve, pátyolgatja a gondolatot, hogy egyszer azért belenyúl abba a fránya távirányítóba, hiszen annyi lehetőség rejlik benne. Sok magánfejlesztésnek köszönhetően új firmware-eket próbálhatunk ki a távirányítónkban, és eldönthetjük, melyik vala kényelmesebb, hasznosabb számunkra. Mivel a fejlesztések többsége open source licenc alatt fut, mi magunk is tehetünk hozzá, vagy éppen elvehetünk belőle, de ehhez kicsit többet kell tudni az eszközökről és a projektekről. Egyes firmware-ek hardver módosítást is igényelnek.

A FlySky 9x távirányító (bár több brand alatt is fut) kemény külseje alatt egy igen szorgalmas és szeretni való kis 8 bites mikroszámítógép ügyködik: egy Atmel ATmega64A. Dicsérhetném oldalakon át, hogy mennyire nagyszerű és strapabíró találmány, de ezt a kis könyvében úgyis jobban leírták az alkotói. Áldott tulajdonsága az önmagát írni való képessége, ráadásul ezt az áramkörbe beültetve is el tudja végezni (ISP). Majdnem elpusztíthatatlan és olcsó – ezen tulajdonságok teszik tökéletes alannyá a kreatív elmével megáldott modellezők számára.

Ahhoz, hogy a firmware-t a mikrokontrollerbe töltsük, össze kell kötnünk egy számítógéppel (ez lehet PC, Mac, vagy egy programozó eszköz). Ehhez 6 lábat kell megkeresnünk a mikrokontrolleren (zárójelben az ATmega64A kivezetés számai): SCK (11), MOSI (12 vagy 3 [Tx]), MISO (13 vagy 2 [Rx]), RESET (20), GND (63), VCC (64). Hogy a feszültséget és az időzítéseket megfelelő szinten tudjuk tartani, egy programozót is közbe lehe iktatni. Ilyenkor a számítógép valamilyen módon átadja a firmware bináris kódját a programozó eszköznek, és az gondosan ügyelve a megfelelő feszültségekre az időzítésekre adagolja a mikrokontrollernek. Munkánkhoz lényegében bármelyik AVR programozó eszköz megfelel, mely ismeri az ATmega64a mikrokontroller speciális igényeit, de ha ajánlhatom, legyen AVRdude kompatibilis. Sok AVR-piszkáló program ezt a kis parancssoros programot használja a háttérben és szintén open source:), – futtatható mind Windows mind Linux környezetben, támogatja a COM, az LPT és az USB portokra kötött programozó eszközök hadát, ráadásul, a támogatása is jó.

atavrisp

Talán a legegyszerűbb programozók a soros és párhuzamos portra köthető egységek: nem igényelnek speciális drivert, de oda kell figyelni a lábkiosztásra, és megbosszulhatják, ha hibázunk. USB ISP-k ugyan igényelnek drivert, de elláthatják árammal a programozandó eszközt.
párhuzamos port. Ha biztos a kezünk, elég lesz pár 220 Ohmos ellenállás. Ha rákeresünk a témára, ezerszámra jönnek a találatok. Egy példát én is bemásolok, de könnyű kiereszteni a portból a füstöt, ezért más megoldást javaslok.
soros portra köthető egység elkészítése sem igényel atomfizikusi diplomát. Részletes leírását a diy4fun oldalán találtam. Az eszköznek összköltsége nagyjából egy gombóc fagyi árával mérhető, és egy órányi munkánkba kerül. Ha sikerült összerakni, kell hozzá egy soros port a PC-n, vagy egy USB-RS-232 átalakító, egy program, – mondjuk PonyProg vagy AVRdude és hozzá AVRdude GUI. A program menüjében válasszuk ki a megfelelő eszközt: SI Prog API vagy ponyser és akkor már flesselhetünk is.
USB port. AVR Pocket Programmer (driver), USBTinyISP, mySmartUSB light és a modellezők körében igen népszerű: USBasp. Ráadásul nevetségesen olcsó. Végiggondoltam, hogy mennyi idő kell egy egyszerű programozó összerakásához, és végül rendeltem egy USBasp-t. Érdemes ezenkívül még megtekinteni még a WinAVR illetve az AVR Burn-O-MAT programokat. Hasznos társaink lehetnek a jövőben.

A következő módosításokat mindenki a saját felelősségére végezze, semmilyen garanciát nem vállalunk a módosításokért!
A távirányítóban elvégzett módosítások garanciavesztéssel járnak!

Aki átlép ezen a küszöbön, magára vessen :). Innen nincs visszaút, mert minek is mennénk vissza a sötét középkorba.
A programozó bekötéséhez célszerű csatlakozóra kivezetni a szükséges lábakat, és azt egy biztonságos helyen beépíteni a távirányító dobozába. Ehhez megkeressük az ISP-hez szükséges vezetékeket. A távirányító alaplapján, a mikrokontrollertől balra (felirata alapján), közelebb a távirányító talpához találunk ezüst pöttyöket: teszt vagy programozó padok (FlySky V.1.x alaplapján sajnos nem jó helyre kerül az egyik potty, így le kell majd kaparni a lakkot az egyik pálya kis szakaszán). Ezen lakkmentes területekre forrasszuk a vezetékeket, és egy csatlakozóba összefogva őket kivezetjük. Mivel a mikrokontroller két kommunikációs porttal is rendelkezik, így egyes esetekben lehetnek eltérések a bekötésben, de a következő az általános:

ATmega64 TQFP ATmega64 id_v2 ATmega64 SPI ISP-connector ISP-connector ISP-connector

Ezzel a készülékünk készen áll a szoftver frissítésre. De még mielőtt a firmware bugyraiba belevetnénk magunkat, és a távirányító is a boncasztalon van, nézzük meg, mit tehetünk még a távirányítónk jobbá tételéért.

FlySky 9x – lélektan

By , 2012. April 8 12:38

Számomra a távirányító legvonzóbb része a szoftver, és annak folyamatos szabad fejlesztése. Sokan készítenek videókat, írnak cikkeket a készülék használatáról, megoldásokról és trükkökről. A párhuzamos fejlesztések megtették a jótékony hatásukat és mára egy tucatnyi új firmware (elektronikai eszközt vezérlő mikroprogram) létezik, ráadásul ezeket mi magunk is módosíthatjuk, beírhatjuk az eszközbe. Ezzel a távirányítónk új tulajdonságokra, tudásra tesz szert, ezzel válik jobbá, kényelmesebbé, hasznosabbá számunkra (módosított menü, új mixek, telemetria, PPM csatornaszám, moduláció iránya, frame/keret hossz stb.). A kreatív modellezők nem csak firmware-t, hanem a hardver részét is átépítették. Egy ilyen alaplap sajnos többe kerül, mint egy komplett rádiószett. De nézzük előbb, mi rejtőzik a műanyag bőr alatt.

A készülék lelke egy Atmel ATmega64A 8 bites mikrokontroller, mely rendszeres időközönként leolvassa a potméterek (3+4), kapcsolók (7), trimerek (4) és gombok(6) állapotát/helyzetét, kiértékeli a mixfüggvényeket, előállítja a PPM jelet és kezeli a 128 x 64 pixeles molochrom LCD kijelzőt. A következő ábra a működési elvet mutatja be (távirányító beállítása nélkül):

FlySky kapcsolók

A rendszer kétféle bemenetet fogad:
1. analóg – potméterek, botkormányok – alapvetően feszültségváltozást idézünk elő mozgatásukkal, amit az analóg-digitális konverter egy bináris számmá átalakít (-512 és 511 érték között). Mivel minden potméter egy kicsit más, ezért a végállások meghatározásához kalibráció elvégzése szükséges (pl. szoftverfrissítés után).
2. digitális – kapcsolók, gombok – bináris értékű adatot szolgáltatnak: (On-Off, a háromállású kapcsoló két kapcsoló egyesítésével hozták létre).

Kezdjük talán a legfontosabbakkal (rajzok, jelölések MODE2-re értendőek).

— potméterek:

  1. AIL – csűrő
  2. ELE – magasságkormány
  3. THR – gázkar
  4. RUD – oldalkormány
  5. P1 – potméter – Hov.Pit
  6. P2 – potméter – Hov.Thr
  7. P3 – potméter – Pit.Trim, AUX2
  8. (a nyolcadik ADC port a feszültség mérését végzi)

Ezen analóg bemenetek digitalizálás után átesnek egy normalizáláson, amely a kalibrációs adatok alapján a kapott értékeket a megfelelő számtartományba helyezi. A botok adatait ezután még egy Dual Rate és Expo szűrő tovább igazítja.

Dual Rate (D/R) – gyakran kettős kitérítőnek nevezik, bár szerintem, nem adja át azt, amire használják. Lényegében a szervók maximális kitéréseinek korlátozására szolgál. Lassú repülésnél lehet 100%, ha nagy sebességgel haladunk, akkor a 60% is elegendő a manőverek végrehajtásához. (egy szorzóról van szó, melyet a függvényparamétereknél használjuk)
Expo – alapvetően a szervók lineárisan követik a irányító botok mozgását. Ennél kényelmesebb és precízebb irányítás nyújt az exponenciális követés: a közép vagy minimum állapot körnékén kevésbé érzékeny, kisebb kitérést, finomabb mozgást tesz lehetővé, míg a végálláshoz közelítve egyre erőteljesebb reakciót vált ki.

dr-expo

— kapcsolók, gombok:

  1. T.Cut – motor leállító
  2. Rud.D/R – oldalkormány kitérési tartomány váltó
  3. Ele.D/R – magassági kormány kitérési tartomány váltó
  4. F.Mode – (AUX 3), 3-állású repülési mód választó kapcsoló (ID0 – a felső, ID1 – középső, ID2 – az alsó pozíció)
  5. Ail.D/R – csűrőkormány kitérési tartomány váltó
  6. Gear– futómű kapcsoló
  7. TRN – oktató kapcsoló (rugós visszatérítésű)

Trimerek – 2-2 gombkapcsolóval ellátott csúszkák, melyek segítségével ofszet hozzáadást végzünk, vagyis elmozdítjuk valamely irányba a karok középértékét. Gázkar esetében a minimális érték körüli eltolást végezzük a trimmelő kar segítségével. A szélső kar kitérésekhez közelítve a trim hatása csökken és maximális kitérésnél egyenlő a nullával (-31 – 32, de elérhető az 512 is 4-foku polinóm segítségével).

SW1 .. 6-os – Speciális szoftveres kapcsolók, melyek segítségével kijelző képét, távirányító és modellünk beállításait elérjük el, változtatjuk (ezekről és még sok-minden másról bővebben a er9x projekt magyar leírásában olvasható).

flysky-flow
Adatok feldolgozásának folyamata a FlySky távirányítóban.

Mixer – függvényék, paraméterek, változók rendezett halmaza, – ez a mag, mely összeköti a szoftver egyes moduljait, meghatározza a kimenő adatok értékeit (akár 16 csatorna is lehet!) a bemenő adatok függvényében, elvégzi a bemenő adatok súlyozott kiértékelését, figyel az időzítésekre.
Curve-válaszgörbék, melyek a bemenő és a kimenőjelek közti összefüggést írják le. Áldott tulajdonságuk, hogy csak az összefüggést írják le. Az forrás és a kimenet hozzárendelkezik a mixben történik, ezért ugyanaz a függvény több mixben is felhasználható.
SoftSwitch – szoftveres gombok, funkcionálisan úgy használhatjuk őket, mintha kapcsolók lennének, de nem fizikai kapcsolóval vannak összekötve, hanem logikai feltételeket tudunk rendelni hozza. Ha a feltétel teljesül, akkor bekapcsoltnak, ha nem teljesül, akkor kikapcsoltnak tekinti a rendszer.
SaftySwitch – biztonsági kapcsolók – biztonságos magas prioritású értéket rendelhetünk egy csatornához egy kapcsolón keresztül. Például -125 értéket a 3-s csatornához, miközben állítjuk a többi csatornát, megakadályozva a véletlen elindulást.
Limit – (máshol lehet ATV, EPA, AST) a legjobb esetben a szervók úgy vannak mechanikailag összekötve a vezérszervekkel, hogy azok teljes mozgásterükben szabadon, ütközés nélkül, teljesen kitérnek. Ha erre nincs lehetőség, komputeres rádión korlátozni lehet a kibocsátott jel értékét, ezzel korlátozva a szervó mozgását (pl. az kiküldött maximumok -256 – 255 helyett csak -232 – 231, de lehet aszimmetrikus is – ilyen az EPA). Ezt kétfeléképpen lehet megvalósítani: korlátozzuk a kimenő jel nagyságát (ilyenkor egy holttér keletkezik az irányító karok végállásaiban) és függvényparaméterek súlyozása (AFR) – ilyenkor a jelkeverő függvények bonyolultabbak és nagyobb számítási teljesítményt igényelnek.

Lehetne még többet, részletesebben írni a rádió lehetőségeiről, de ez már megtették mások, így nem folyok bele a többoldalas litániákba. Fontos megemlíteni még, hogy egyes firmware verziókban nincsenek fix funkciójú kapcsolók! Bármelyik kapcsoló bármi lehet. Ami már szintek fantasztikum, hogy a távirányítót számítógépes programon keresztül (compagnion9x, ePee) is tudjuk programozni, modellbeállításokat fel/le-tölteni a készülékbe, meg tudjuk osztani másokkal.

Azok számára, kik szívesen belenéznének a belsejébe, csatolom a kapcsolási rajzot is, bár később még boncasztalra kerül a távirányító.

Panorama Theme by Themocracy